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Abstract

Brazil experienced a large decline in earnings inequality between 1996 and 2012, with the vari-

ance of log earnings falling by 26 log points. Using administrative linked employer-employee

data, we fit models with log-additive worker and firm fixed effects within overlapping subpe-

riods in order to identify the sources of this decline. We find that compression in firm fixed

effects accounts for 45 percent of the decline in the variance of log earnings over the period and

compression in worker fixed effects accounts for 28 percent, with a fall in their covariance and

the residual explaining the remainder. The drop in firm pay differences is not driven by con-

vergence in firm productivity. Instead, a significant fraction of the decline is due to a weaker

productivity-pay gradient across firms. Our results suggest that changes in pay policies, rather

than changes in firm fundamentals, played a significant role in Brazil’s inequality decline.
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1 Introduction

Brazil has experienced a large reduction in earnings inequality since the mid-1990s. This came

after decades of Brazil being infamously known as the most unequal country in Latin America,

which itself ranked among the most unequal regions in the world.1 While the decline of earnings

inequality in Brazil resembles the experience of other Latin American economies during this pe-

riod, it stands in stark contrast to that of the United States, which like several other developed

countries saw inequality steadily increasing at the same time.2 In this paper, we study the sources

of Brazil’s decline in earnings inequality.

Guided by recent research, which suggests that firms are an important determinant of earnings

dispersion, we decompose the sources of Brazil’s inequality decline by exploiting a large admin-

istrative linked employer-employee dataset containing information on over one billion job spells

between 1988 and 2012. By linking individual workers to their employers and tracking both over

time, we are able to separate the contributions of firm- and worker-specific factors towards the

overall fall in inequality. Subsequently, we investigate the link between firm performance and

the firm component of pay by using another confidential dataset containing information on firm

characteristics of hundreds of thousands of firms between 1996 and 2012.

We uncover two main results. First, firms played an important role in the decline in earnings

inequality in Brazil over this period, explaining about 45 percent of the fall in the variance of log

earnings between 1996 and 2012. Compression in worker fixed effects explains an additional 28

percent of the decline, with the remaining part due to a decline in the covariance between worker

and firm fixed effects and the residual. As worker heterogeneity accounts for 48–56 percent of

the level of inequality whereas firm effects account for only 15–23 percent, the compression in the

firm-specific pay component contributed more than proportionately to Brazil’s inequality decline.

Second, changes in the link between firm performance and pay accounts for a significant frac-

tion of the compression in the firm component of pay. We first show that a significant share of

the variation in the firm component of pay can be explained by firm productivity differences,

with more productive firms paying more. Subsequently, we show that the dispersion in firm pro-

ductivity did not decline over this period. Rather, we identify a weakening pass-through from

1See Lopez and Perry (2008) and Tsounta and Osueke (2014).
2Using administrative data, Kopczuk et al. (2010) document in detail earnings inequality trends for the U.S., while

chapter 8 of Atkinson and Bourguignon, eds (2015) discusses inequality trends in middle- and high-income countries.
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productivity to pay as an important driver of Brazil’s inequality decline, accounting for 25 percent

of the overall decline in earnings inequality.

Our findings suggest that changes in pay policies, rather than changes in firm fundamentals,

played an important role in Brazil’s inequality decline. These findings shed new light on a lively

debate around the drivers earnings inequality in many developed countries. For example, ? and

Faggio et al. (2010) argue that a significant share of the increase in earnings inequality in the U.S.

can be explained by widening dispersion of the firm productivity distribution. By showing that

over the period from 1996–2012 the underlying firm productivity distribution remained constant

while the link between firm productivity and worker pay weakened in Brazil, we highlight the

importance of a complementary determinant of inequality dynamics.

Related literature. Our paper is closely related to three broad strands of the literature. The first

studies the role of specific mechanisms in Brazil’s inequality decline over the last two decades.

For example, Ulyssea (2014) considers the role of worker flows between the informal and formal

sectors. In related work, de Araujo (2014) studies the role of labor adjustment costs in propa-

gating wage inequality in a frictional search framework. Dix-Carneiro and Kovak (2015) analyze

the long-lasting impact of industry-specific tariff cuts in the presence of wage-equalizing migra-

tion. Barros et al. (2010) use Brazilian household data to study inequality trends since 1977 and

decompose the decline in labor earnings inequality in Brazil since 1990. Given their data and

method, those authors conclude that the inequality decline was in equal shares driven by educa-

tion reform and labor market integration. Medeiros et al. (2014) use administrative tax return data

to study the evolution of top income inequality in Brazil 2006–2012, but they cannot distinguish

between the role played by worker versus firm characteristics during that period. Using linked

employer-employee data, Lopes De Melo (2013) decomposes the cross-sectional inequality levels

in Brazil into components due to firms and workers. Helpman et al. (2013) use the same dataset

to show that a significant share of overall wage inequality is due to between-firm differences and

that Brazil’s trade liberalization starting in the late 1980s led to increasing between-firm earnings

inequality. We add to this literature by studying changes on the worker and firm side towards this

decline in a joint framework.

With the increasing availability of large, administrative matched employer-employee datasets,

a recent literature has started to examine the role of firms in wage determination. The first paper
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to make use of such large, linked employer-employee datasets to jointly study the role of worker

unobservables and firms for pay is Abowd, Kramarz, and Margolis (1999, henceforth AKM), who

study the role of firm and worker heterogeneity for wage inequality in France. They find an

important role for firms in generating earnings inequality. Similar conclusions using the same

methodology have been reached among others for the state of Washington in the U.S. (Abowd et

al., 2002), Denmark (Bagger et al., 2013), Austria (Gruetter and Lalive, 2009), and Germany (Card

et al., 2013). The last paper is closest to our methodology of applying the AKM framework in

overlapping subperiods to study changes in wage determinants over time. They find that increas-

ing dispersion in the firm-specific component of pay contributed significantly to rising earnings

inequality in West Germany. Bloom et al. (2015) highlight firms as an important driver behind the

increase in U.S. labor earnings inequality since 1980, but do not employ the AKM methodology

to control for sorting of highly-paid workers into high-paying firms. In this paper, we go one step

further than previous decomposition exercises by linking a dynamic set of AKM decomposition

results to changes in firm productivity and other firm characteristics.

Third, a growing literature studies the link between firm characteristics and worker outcomes.

Menezes-Filho et al. (2008) investigate the link between firm characteristics and wages in Brazil in

the cross-section of linked data on worker earnings and firm characteristics in Brazil’s manufac-

turing and mining sectors. Bagger et al. (2014) investigate the role of labor misallocation in driving

the positive correlation between labor productivity and wages at the firm using Danish data. Barth

et al. (2014) obtain a similar conclusion about the importance of firms using matched employer-

employee data for a select number of U.S. states, but not controlling for sorting of workers to

firms. Card et al. (2015) study the degree of rent-sharing in Portugal with a particularly emphasis

on gender difference in profit participation and the allocation of workers across firms. Our con-

tribution to this literature is to examine an economy in which firms were an important driver of a

decline in earnings inequality, and to investigate the drivers behind these trends.

The rest of the paper is structured as follows: Section 2 provides an overview of the main insti-

tutional changes and macroeconomic trends affecting Brazilian labor markets from 1988 to 2012.

Section 3 summarizes the administrative datasets used in our empirical analysis and discusses

sample selection and variable definitions. Section 4 provides descriptive statistics on trends in

earnings inequality in Brazil during this time. Section 5 introduces the empirical framework we

use to decompose the variance of log earnings into a worker and firm effect as well as the sub-
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sequent regressions we run to link these estimates to worker and firm fundamentals. Section 6

presents our main empirical results as well as checks on the validity of our empirical framework.

Finally, Section 7 summarizes our key findings and concludes.

2 Institutions and macroeconomic trends in Brazil

As part of a wave of democratization in Latin America, Brazil transitioned from military to civil-

ian rule in 1985 and held its first democratic election in almost three decades in 1989. During the

following two and a half decades, Brazil cycled through six elected presidents from four polit-

ical parties. Simultaneously, the country experienced a sustained period of economic growth—

between 1996 and 2012 real gross domestic product grew by on average 2.3 percent per year. In

this section, we discuss some of the institutional changes that could have have affected inequality,

including monetary policy reform, trade liberalization and social policy.

From 1980–1989, yearly inflation averaged 355 percent, which was followed by a yearly aver-

age of 1,667 percent between 1990 and 1994 (World Bank, 2015). Several monetary stabilization

plans implemented during this period failed.3 As a result, wage indexation to the minimum wage

became the norm, with labor payments being adjusted first annually and then on a monthly basis

proportionately to the previous period’s realized inflation rate. In 1994, hyperinflation finally sub-

sided with the introduction of the "Real Plan". This ambitious stabilization program introduced

a gradual float of the local currency, tightened monetary and fiscal policy, and lowered inflation

below two-digits. By the early 2000s, exchange rates and inflation had stabilized.

Brazil’s trade liberalization over the last 25 years has been frequently cited as a major contribu-

tor to the country’s growth in total factor productivity (TFP) by opening up the economy to foreign

investment (Ferreira and Rossi, 2003; Ferreira et al., 2007; Moreira, 2004; Muendler, 2004; Córdova

and Moreira, 2003). Starting with initially high import tariffs that had substituted import bans

from the previous decade, a series of trade liberalization bills in the late 1980s eliminated selected

tariffs and eradicated quantitative import controls. When social democrat Fernando Henrique

Cardoso became president in 1995, he strengthened this agenda with a reduction of tariff and

non-tariff trade barriers to one tenth of their levels in 1987 (Pavcnik et al., 2004). In addition to
3Garcia et al. (2014) provides a comprehensive overview of the nine stabilization plans, 15 wage policies, 19 changes

to the exchange regime, 22 proposals for the renegotiation of the foreign debt and 20 fiscal adjustment programs that
Brazil implemented during this period.
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its potential effect on TFP growth, Helpman et al. (2013) argue that the opening up to trade con-

tributed to the rise in income inequality seen in the late 1980s and early 1990s, and later to the start

of the decline in wage dispersion in 1995.

Health, education and other social programs began expanding during the late 1990s, a trend

that strengthened once the left-wing Workers’ Party ascended to power in 2003. It doubled social

expenditure as a fraction of GDP and, although it remains less than one percent, it is often por-

trayed as an important contributor to the reduction in household income inequality.4 The reach

of the public cash transfer program, Bolsa Família, increased to cover 11 million families in 2006,

which comprised nearly 25 percent of the total population (Barros et al., 2010). Education spend-

ing increased reaching 5.5 percent of GDP in 2009 (compared to 3.5 percent in 2000 and 5.7 percent

among G20). As we discuss in Section 4 this is reflected in a rapidly rising share of the labor force

with a high school degree. Moreover the quality of education relative to other countries, as mea-

sured by the international PISA scores, has also improved, with Brazil having the greatest increase

in mathematics among 65 countries since 2003 (OECD, 2012).

The Worker’s Party complemented social policies with minimum wage increases above the

previous upward trend. Within their first year in office, they established a 20 percent increase in

2003 and continued to implement yearly increases averaging over 10 percent during the next 10

years. As a result, the minimum to median wage in Brazil increased from around 34 percent in

1996—similar to U.S. levels—to over 50 percent, which is close to the level in France. Engbom and

Moser (2015) argue that this large increase in the minimum wage can explain up to 70 percent of

the reduction in earnings inequality in Brazil over the 1996–2012 period, while being consistent

with the other facts we document in the current paper.

Apart from the rapid increase in the minimum wage, several other important changes in labor

regulation took place during this period. Before reforms started in the late 1980s, Brazil had a

highly regulated labor market. For instance, since 1965, a national Wage Adjustment Law man-

dated yearly wage increases for all workers in the economy and dismissal costs were high. After

the transition to civil rule and the signing of a new constitution in 1988, flexibility in labor markets

was further affected by firing penalties and an increased power of labor unions. The latter gather

about a quarter of employed formal workers in Brazil.5

4Using household data, Barros et al. (2010) estimate that social programs accounted for about 20 percent of the
decline in household income inequality.

5Bioto and Marcelino (2011) argue that there has been an uptake in labor strike activity in Brazil since the year 2000.
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Carvalho Filho and Estevão (2012) find evidence that these reforms shielded wage-setting con-

ditions from firm performance and reduced wage flexibility. Lagging other liberalization reforms,

it was not until the abolition of the Wage Adjustment Law in 1995 that a period of greater flex-

ibility and less regulated wage-setting practices started. Further legislation in 1997–1998 eased

restrictions on temporary contracts and lowered dismissal barriers. Subsequently, formal employ-

ment increased by around five percent and unemployment fell from 10 percent in 2000 to around

six percent in 2011 (World Bank, 2015). The overall labor participation rate has remained stable at

73–75 percent over this period.6

With this brief overview of recent developments in Brazil, we turn to a discussion of the data

we use to decompose the decline in inequality experienced in Brazil over the past two decades.

3 Data

Our analysis uses two confidential administrative datasets from Brazil: the Relação Anual de Infor-

mações (RAIS) contains earnings and demographic characteristics of workers as reported by em-

ployers, and the Pesquisa Industrial Anual Empresa (PIA) contains detailed information on revenues

and costs of large firms in Brazil’s mining and manufacturing sectors. To make the reader familiar

with these confidential data, we briefly discuss their collection, coverage, variable definitions, and

sample selection.

3.1 Description of linked employer-employee data (RAIS)

Collection and coverage. The RAIS data contains linked employer-employee records that are

constructed from a mandatory survey filled annually by all registered firms in Brazil and admin-

istered by the Brazilian Ministry of Labor and Employment (Ministério do Trabalho e Emprego, or

MTE). Data collection was initiated in 1986 within a broad set of regions, reaching complete cover-

age of all employees at formal establishments of the Brazilian economy in 1994.7 Fines are levied

on late, incomplete, or inaccurate reports, and as a result many businesses hire a specialized ac-

6Labor force as a percentage of total population aged 15–64, from OECD Employment and Labor Market Statistics.
7Because registration with the central tax authorities is necessary and sufficient for a firm to be surveyed, the RAIS

covers only workers in Brazil’s formal sector. Complementing our analysis with data from the Brazilian household
survey Pesquisa Nacional por Amostra de Domicílios (PNAD), we find that the formal sector employment share among
male workers of age 18–49 grew from 64 to 74 percent between 1996 and 2012. Differential inequality trends between
formal and informal sector workers are discussed at more length in Engbom and Moser (2015).
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countant to help with the completion of the survey. In addition, MTE conducts frequent checks on

establishments across the country to verify the accuracy of information reported in RAIS, particu-

larly with regards to earnings, which are checked to adhere to the minimum wage legislation.8

The RAIS contains an anonymized, time-invariant person identifier for each worker, which

allows us to follow individuals over time. It also contains anonymized time-invariant establish-

ment and firm IDs that we use to link multiple workers to their employers and follow those over

time. Although it would be possible to conduct part of our analysis at the establishment instead

of firm level, this paper focuses on firms for three reasons. First, to the extent that there is substan-

tial variation in pay across establishments within firms, our firm-level analysis provides a lower

bound on the importance of workers’ place of employment.9 Second, we think that many of the

factors that could give rise to employer-specific components of pay including corporate culture,

company leadership, etc., act at the firm level. Additionally many regulations targeting pay poli-

cies differ as a function of firm-level employment, not establishment-level employment . Third,

we will later use data on firm characteristics such as financial performance that are not available

at the establishment-level.

Variable definitions. For each firm at which a worker was employed during the year, the RAIS

contains information on the start and end date of the employment relationship, the amount the

worker was paid and a broad set of worker and job characteristics. Reported earnings are gross

and include regular salary payments, holiday bonuses, performance-based and commission bonuses,

tips, and profit-sharing agreements. Although this is a broad measure of earnings, it does not con-

tain other sources of income such as capital income or in-kind transfers. We divide total earnings

from an employment relationship in a given year by the duration of the job spell. 10 This accounts

to some extent for labor supply. As hours worked only exists for some years, we do not use this

to construct a measure of per hour pay. Instead, to limit the impact of unmeasured labor supply

8In addition to being fined, non-compliant firms are added to a “Black List of Slave Work Employers,” made avail-
able publicly under law Decree No. 540/2004. A recent version of the list dated March 2015 is available from Brazilian
television news channel Repórter Brasil at http://reporterbrasil.org.br/documentos/lista_06_03_
2015.pdf.

9As we will show later, however, the explanatory power of our model incorporating firm and person effects is high,
leaving little variation to be explained by separate establishment level effects.

10 That is, if an employment relationship is reported as active for seven months during the year, we divide total
earnings reported for that employment relationship for that year by seven.
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differences, we focus on prime age males.11

We define a consistent age variable by calculating the year of birth for any observation, and

then setting an individual’s year of birth as the modal implied value and finally reconstructing

age in each year using this imputed year of birth.12 Similarly, we define a consistent measure

of years of schooling by first setting it to its modal value within a year (in case of multiple job

spells in a year) and then ensuring that the years of schooling are non-decreasing across years.

Subsequently, we define four education groups based on attained degree implied by the reported

number of years of schooling and the education system in Brazil (primary school, middle school,

high school, and college).

The data also contain information on detailed occupation classification of the job and detailed

sector classification of the employer establishment. Both the industry and occupation classifica-

tion systems underwent a significant change during the period we study. For occupations, we use

the pre-2003 classification (Classificação Brasileira de Ocupações, or CBO) at the two-digit level. We

also use two-digit sectoral classifications (Classificação Nacional de Atividades Econômicas, or CNAE)

according to the pre-2003 period. We make occupations and sectors reported for 2003–2012 consis-

tent with the older CBO and CNAE classifications by using conversion tables provided by IBGE.

In order to achieve a high level of consistency between the old and the new classification schemes,

we cannot go less coarse than two digit but we believe that for the purpose of this paper this

restriction is not of major importance.

Our firm size measure is the number of full-time equivalent workers during the reference year.

Importantly, we calculate this prior to making any sample restrictions so that it reflects to the

greatest extent possible the total amount of labor used by the firm during the year. We calculate it

as the total number of worker-months employed by the firm during the year divided by 12.

Sample selection. We exclude observations with either firm IDs or worker IDs reported as in-

valid as well as data points with missing earnings, dates of employment, educational attainment

or age. Together, these cleaning procedures drop less than one percent of the original population,

indicative of the high quality of the administrative dataset. Subsequently, to limit the computa-

tional complexity associated with estimating our model, we restrict attention to one observation
11In the years for which we have data on hours, we find relatively little variation in hours, with most prime age males

reporting 44 hours of work a week.
12We use age instead of experience throughout our analysis; results are similar using age plus six minus years of

education as a measure of experience.
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per worker-year. We impose this restriction by choosing the highest-paying among all longest

employment spells in any given year. As the average number of jobs held during the year is 1.2

and there is not trend in this, we do not believe that loosening this restriction would meaningfully

affect our results.

Finally, we restrict attention to male workers of age 18–49. We make this restriction partly to

provide results comparable to a large part of the literature, which tends to focus on prime age

males, partly to avoid issues related to intensive margin labor supply, since we lack a complete

measure of hours worked.

Descriptive statistics. Table 1 provides key summary statistics for the RAIS data for six sub-

periods of five years each with one year overlap between adjacent periods, namely 1988–1992,

1992–1996, 1996–2000, 2000–2004, 2004–2008, and 2008–2012. Since our analysis focuses on prime

age males and prime age males working for large manufacturing and mining firms, we provide a

brief comparison of these subpopulations to the overall population of formal sector employees. As

we will be primarily concerned with the later four subperiods during which inequality declined

markedly and for which we have firm level data, we focus our discussion on these periods.

Panel A shows statistics for the overall formal sector work force in Brazil and Panel B for the

subpopulation of prime age males. Prime age males are consistently about 0.3–0.4 years older

than the population average. They also have 0.78 years of schooling less than the overall sample

in the 1996–2000 subperiod; this gradually drops to 0.65 years in the last subperiod. Finally, prime

age males earn about eight to nine log points more than the overall population, but the variance

of log earnings is very similar to the overall population.

Panel C presents statistics on the subpopulation of prime age males working at large min-

ing and manufacturing firms. Prime age males in the PIA subpopulation are about 0.8 years

younger than all prime age males in the 1996–2000 subperiod, which gradually increases to 1.3

years younger in the last subperiod. They are similar to all prime age males in terms of education.

The PIA sample of prime age males earned on average 27 log points more than all prime age males

in the 1996–2000 subperiod; this declined to only a 19 log point premium in the last subperiod.

Finally, they display a two log point higher standard deviation of log earnings in the 1996–2000

period, which increases to four log points in the last subperiod.
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Table 1. RAIS summary statistics

Earnings Age Schooling
(1) (2) (3) (4) (5) (6) (7) (8)

# Worker-years # Unique workers Mean St.d. Mean St.d. Mean St.d.
PANEL A. ALL FORMAL SECTOR WORKERS (RAIS)
1988–1992 165.5 41.9 1.10 0.86 31.91 11.47 7.65 4.45
1992–1996 162.1 43.4 1.18 0.86 33.20 11.32 8.08 4.41
1996–2000 174.6 47.0 1.19 0.84 33.68 11.27 8.60 4.27
2000–2004 202.7 52.7 1.00 0.80 34.02 11.33 9.49 4.05
2004–2008 254.2 62.7 0.81 0.74 34.26 11.48 10.25 3.78
2008–2012 326.5 76.2 0.71 0.71 34.55 11.66 10.78 3.52

PANEL B. ADULT MALE WORKERS

1988–1992 86.5 25.5 1.24 0.87 33.26 10.82 7.04 4.30
1992–1996 87.3 26.4 1.29 0.87 33.88 10.79 7.37 4.27
1996–2000 92.7 28.8 1.27 0.85 33.97 10.78 7.82 4.16
2000–2004 105.3 32.5 1.07 0.80 34.14 10.92 8.70 4.00
2004–2008 126.9 37.3 0.88 0.75 34.44 11.11 9.50 3.79
2008–2012 154.2 43.9 0.80 0.72 34.91 11.34 10.13 3.59

PANEL C. ADULT MALE WORKERS AT LARGE MANUFACTURING AND MINING FIRMS (PIA)
1996–2000 16.6 6.3 1.54 0.87 33.20 10.07 7.83 4.05
2000–2004 18.0 6.8 1.29 0.85 33.04 10.20 8.75 3.91
2004–2008 23.2 8.5 1.09 0.80 33.11 10.45 9.41 3.77
2008–2012 26.9 9.9 0.99 0.76 33.60 10.70 10.04 3.60

Notes: The number of worker-years and number of unique workers are reported in millions. Statistics on
earnings are in log multiples of the current minimum wage, schooling is in years. Panel A includes all
workers in the RAIS dataset. Panel B includes male workers that are between 18 and 49 years old. Panel
C includes male workers age 18–49 working at large manufacturing and mining firms included in the PIA
firm characteristics data. Means are computed by period. The standard deviation is calculated by first
demeaning variables by year and then pooling the years within a subperiod.

3.2 Description of firm characteristics data (PIA)

Collection and coverage. The PIA data contain information on firm financial characteristics

from 1996–2012. The dataset is constructed by the Brazilian National Statistical Institute (Instituto

Brasileiro de Geografia e Estatística, or IBGE) based on annual firm surveys in the manufacturing

and mining sector. This survey is mandatory for all firms with either more than 30 employees or

above a revenue threshold as well as for an annual random sample of smaller firms.13 As with

RAIS, completion of the survey is mandatory and non-compliance is subject to a fine by national

authorities. Each firm has a unique, anonymized identifier, which we use to link firm characteris-

13The revenue threshold for inclusion in the deterministic survey has grown over the years, standing at USD300,000
in 2012.
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tics data from PIA data to worker-level outcomes in the RAIS data.

Variable definitions. The PIA dataset includes a breakdown of operational and non-operational

revenues, costs, investment and capital sales, number of employees and payroll. All nominal val-

ues are converted to real values using the CPI index provided by the IBGE. Instead of the measure

of firm size in the PIA, we prefer our measure of full-time-equivalent employees constructed from

the RAIS as it accounts for workers only employed during part of the year. We define operational

costs as the cost of raw materials, intermediate inputs, electricity and other utilities, and net rerev-

enues as the gross sales value due to operational and non-operational firm activities net of any

returns, cancellations, and corrected for changes in inventory.14. We finally construct value added

as the difference between net revenues and intermediate inputs, and value added per worker as

value added divided by full-time equivalent workers. This is our main measure of firm productiv-

ity. We have also constructed alternative measures of firm productivity by cleaning value added

per worker off industry-year effects and some measures of worker skill. In our main analysis, we

focus on “raw” value added per worker and present results containing these alternative measures

in the Appendix.

Our productivity measure differs from the commonly used total factor productivity (TFP) (Bar-

telsman et al., 2009, 2013) since it does not control for capital intensity. A major reason for this is

that we do not have data on capital, only on investment. To construct a measure of the capital

stock, we would need to assume a depreciation rate to be able to impute capital using reported

investment. We would also need to impute capital in 1996 since we do not have data prior to that,

as well as for any firm that enters the PIA population. We have constructed such a measure of

the capital stock using an assumed annual depreciation rate of five percent and using data on the

aggregate capital stock at the subsector level.15 However, the multiple imputations required to

obtain capital as well as the fact that the investment data is incomplete for many firms lead us to

prefer value added per worker as our measure of firm productivity.16

14We have explored alternative revenue definitions such as only restricting attention to operational revenues or ex-
cluding certain types of non-operational revenues. Such robustness checks yield very similar results to what we report
below.

15Each new firm starts with an initial capital equal to its current net investment plus a share of total capital in its
subsector. The shares are given by taking the share of capital at a firm to be proportional to the share of total net
revenues assuming a firm-level production function of the form y = Aka for a = 1/3. Firms entering the PIA at a later
year are initiated by applying the same method to get those firms’ capital stock proportional to scaled firm revenues
relative to the subsector total.

16In addition, several bargaining models of the labor market have in common that workers and capital owners split
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Sample selection. The PIA firm survey spans the universe of large firms (as defined above)

in Brazil’s manufacturing and mining sectors in addition to a random sample of smaller firms.

Because parts of our analysis make use of the panel dimension on the firm side and to avoid issues

with excessive sample attrition related to our later estimation procedure, we focus our analysis on

the deterministic set of relatively large firms.

Descriptive statistics. Table 2 shows key summary statistics on firms during the four periods for

which we have firm financial data: 1996–2000, 2000–2004, 2004–2008, and 2008–2012. All results

are weighted by the number of full-time equivalent workers employed by the firm. The number

of firms in the PIA increased by 57 percent between the first and the last period. The average firm

size increased by 32 percent and average real value added per worker grow by 27 percent. There

is significant dispersion in both log firm size and log value added per worker across firms, with

the standard deviation of the former being close to two and that of the latter exceeding one. Fur-

thermore, there is no evidence of convergence in either measure. The standard deviation of firm

size monotonically increases whereas the standard deviation of value added per worker first in-

creases rapidly, then falls again in the last subperiod. To the extent that firm characteristics matter

for employees’ labor remuneration, these results suggest that the decline in earnings inequality in

Brazil cannot be explained by declining dispersion in these characteristics over time.

Table 2. PIA summary statistics

Firm size Value added
(1) (2) (3) (4) (5) (6)

# Firm-years # Unique firms Mean St.d. Mean St.d.
1996–2000 142.4 51.1 6.34 1.80 11.15 1.13
2000–2004 168.7 59.9 6.26 1.85 11.19 1.32
2004–2008 202.4 73.0 6.49 1.96 11.22 1.34
2008–2012 230.2 80.2 6.62 2.05 11.30 1.31

Note: The number of firm-years and number of unique firms are reported in thous-
ands. Firm size is the log number of full-time equivalent employees. Value added
is the log of real value added per worker. Means and standard deviations are weigh-
ted by the number of full-time employees. The standard deviation is calculated by
first demeaning variables by year and then pooling the years within a subperiod.

the surplus from production, and value added per worker is arguably the best measure of that surplus. Thus, to the
extent that such models well describe Brazilian labor markets, value added per worker is an important metric.
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4 Inequality trends in Brazil from 1988–2012

In the following section, we first demonstrate that the decline in inequality in Brazil was broad-

based in the sense that it affected a large part of the earnings distribution. Subsequently, we

present results from a series of Mincer regressions, which provides a first look at possible factors

behind the decline. Although we document significant changes in educational attainment and

education premia in Brazil over the last two decades, we find that such changes cannot explain a

majority of the decline in inequality observed in Brazil over this period. Finally, we provide some

suggestive evidence of firms being an important source of inequality as well as a factor behind the

decline in inequality in Brazil.

4.1 Compression in different parts of the earnings distribution

Figure 1 plots log percentile ratios of earnings, from which two facts emerge. First, there was

widespread compression in the distribution of earnings—inequality declined past the 75th per-

centile. Second, the amount of compression gradually declines as one moves further up in the

distribution. For instance, whereas the log 90–50 percentile ratio falls by 20 log points, the log

50–10 ratio falls by a remarkable 35 log points. Similarly, compression in the log 50–25 percentile

ratio exceeds compression in the log 75–50 ratio.

4.2 The (un)importance of worker observables

One candidate explanation for the decline in earnings inequality is increasing educational attain-

ment. As can be seen in the left panel of Figure 2, the fraction of the Brazilian formal sector

workforce with a high school degree rose rapidly during this time, while the fraction with pri-

mary school fell sharply (the fraction with a middle school degree and a college degree remained

relatively flat). There were also important changes to the premia associated with a higher degree,

as can be seen in the right pane of Figure 2 . In particular, the premia associated with a middle

school and high school degree relative to the lowest education group fell rapidly over the past 20

years.
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Figure 1. Log percentile ratios of the earnings distribution in Brazil
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Figure 2. Educational attainment and education premia
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To provide a first look at whether changes in observable worker characteristics were an impor-

tant driver of earnings inequality in Brazil over this period, we run a series of Mincer regressions.

In particular, we regress log earnings of individual i in year t on age dummies interacted with four

education dummies, two digit occupation dummies and two digit sector dummies,

log(earningsit) = ageit ⇥ eduit + occit + secit + # it
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Note that all explanatory variables are allowed to vary freely by year. Based on this regression, we

calculate the predicted value due to each component and report the variance of these predicted

values.

Figure 3 plots the results. In levels, worker observables jointly explain about 45 percent of the

overall variance in log earnings. This does not change much over time, and hence worker observ-

ables explain close to 45 percent of also the fall in inequality. Decomposing this, age and education

account for roughly 20 percent of the variance of log earnings and 27 percent of the decline. In-

equality between occupations increases relative to overall inequality from four to eight percent

of total variance (in fact it also grows slightly in absolute terms). The fraction of total inequality

explained by differences in means across sectors falls from eight to three percent—this accounts

for 12 percent of the overall decline in variance. Finally, covariances between the explanatory vari-

ables increase slightly in importance from 11 percent to 14 percent of total variance and explain

four percent of the overall fall in inequality. We conclude that even when controlling for detailed

worker characteristics, more than half of the level of inequality as well as its decline is residual in

nature.

Figure 3. Variance decomposition from Mincer regressions, by year
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4.3 Earnings dispersion within and across firms

As a first step towards understanding the role of firms for earnings inequality, we investigate the

variance of earnings within and between firms. To this end, we define between-firm inequality

as the variance of the average log earnings at the firm across firms (weighted by firm size) and

within-firm inequality as the variance of the difference between workers’ log earnings and the

average log earnings at their firm. Based on these definitions, one could imagine two hypothetical

polar extremes. First, average earnings could be identical across firms so that overall earnings

inequality is completely due to variance in earnings within firms. In this case, a firm is just a

microcosmos of the overall economy. Second, all workers could earn the same wage within the

firm so that inequality arises entirely due to differences in earnings across firms. In reality, the

question is which channel is quantitatively most important.

Figure 4 plots this decomposition over time in Brazil. We note two insights: Firstly, there is

significant variability in earnings within firms, but an even greater amount of earnings inequality

across firms. Secondly, although both measures of inequality fell during this time, the decline

was particularly pronounced across firms: inequality across firms declined by 25 log points or 45

percent between 1988 and 2012, whereas within-firm inequality dropped by 10 log points or 33

percent.

Figure 4. Variance of log earnings within and between firms
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Although informative, however, this decomposition cannot necessarily be interpreted as firms
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differing fundamentally in the way they compensate their workers. The reason is that some firms

could hire workers who always get paid more regardless of where they work (maybe because they

are more productive, have a higher bargaining power, etc). In this case differences in pay across

firms would arise as a result of recruitment policies and not pay policies.

Another way of illustrating the importance of firm is to compare earnings growth of differ-

ent workers with average earnings growth at their employers. Making use of the link between

workers and firms in the matched employer-employee data (RAIS), one can ask how much of the

earnings growth accruing to a certain income group was mediated by rises in average pay at firms

employing workers from that income group.17

The results of this exercise are shown in Figure 5, first for the period 1988–1996, when earnings

inequality remained roughly constant, and then for 1996–2012, when earnings inequality declined

rapidly. Average earnings growth (solid blue line with circles) was relatively evenly distributed

throughout the earnings distribution between 1988 and 1996, and firm average pay (solid red

line with squares) grew equally in line with the growth rate of wages. The period from 1996–

2012, on the other hand, was marked by a rapid catch-up of the lowest earnings groups, which

in turn is almost entirely explained by the growth of firm average earnings among those groups.

Throughout both periods, there were no significant changes in within-firm earnings inequality

(solid green line with diamonds).

Together, the above results suggest that in order to understand Brazil’s inequality decline, we

need to look beyond the standard wage determinants in the Mincerian tradition. Rather, we pro-

vided suggestive evidence that changes in pay across firms could be an important factor behind

the overall fall in inequality during this time in Brazil. The next section formalizes our approach

to identifying the importance of firm pay policies for earnings inequality.

17Similar calculations are presented for the U.S. in Barth et al. (2014) and Bloom et al. (2015).
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Figure 5. Labor earnings growth of individuals, between and within firms
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5 Empirical framework

For a long time, economists have recognized that worker observables fail to explain a large frac-

tion of the variance of earnings. As we showed above, this is true also for Brazil—even with

detailed occupation and sector controls, Mincer regressions explain less than half of the overall
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variation in earnings in Brazil. Furthermore, a recent literature has argued that there are impor-

tant differences across firms in terms of pay (Abowd et al., 1999). Motivated by these insights,

we estimate two-way fixed effects econometric models controlling for both unobserved worker

and firm heterogeneity. To be able to speak to changes over time in the components of inequality,

we estimate our model separately in six sub-periods covering 1988–1992, 1992–1996, 1996–2000,

2000–2004, 2004–2008, and 2008–2012, respectively. Subsequently, we correlate the estimated firm

effects with observed characteristics of firms in order to investigate what led to changes in the firm

component of pay over time.18

5.1 The AKM framework

In order to identify the two-way fixed effects framework of Abowd et al. (1999), one needs to

observe a panel of workers with the ability to link multiple workers to the same firm. Our data

satisfy these requirments. Within each subperiod, we observe a large number I of workers for up

to five years while working at J firms for a total of N worker-years. Let J (i, t) give the employer

of worker i in year t. We assume that earnings of individual i in year t, yit, in logs can be written as

the sum of a worker effect, ai, a firm effect, aJ(i,t), a time trend, Yt, and an error, # it. Although our

current paper does not model the underlying, fundamental sources of this specification, in subse-

quent work we show how it can be rationalized in a frictional labor market with firm productive

heterogeneity and worker ability differences (Engbom and Moser, 2015).

Our specification thus does not control in this first stage for observable worker and firm charac-

teristics. Instead, we correlate the estimated fixed effects with observable characteristics of work-

ers and firms in a second stage of our analysis. We prefer this specification so as not to identify

these effects off changes within workers and firms during the limited time frame of each subpe-

riod. With regards to age, we additionally notice that unrestricted age controls would be perfectly

collinear with person effects and the time dummies. Although restrictions could be imposed to

address this collinearity problem, we note that for instance the popular restriction advocated by

Deaton (1997) requires many years to be well identified. Thus, also for age we prefer to correlate

it with the estimated worker effect in a second stage. We argue that any error due to growing

earnings with age is likely to be of second order importance within our five year subperiods. We

18In ongoing work we also investigate what drives changes in the worker component of pay.
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thus estimate

log yit = ai + aJ(i,t) + Yt + # it

where

E [# it|i, t, J(i, t), ] = 0

We discuss in greater detail below the assumption on the error term.

As shown by Abowd et al. (1999), worker and firm effects can only be separately identified

within a set of firms and workers connected through the mobility of workers. Table 3 presents

summary statistics on the largest set of workers in each subperiod—this covers 97–98 percent of

all workers in each subperiod. Given that it covers such a large fraction of all prime age males, it is

not surprising that this subpopulation looks very similar to the overall population in all observable

dimensions. Thus the restriction to the largest connected set imposed in the rest of our analysis

appears to be inoccuous.

Table 3. Summary statistics on workers in largest connected set, relative to prime-age males

Earnings Age Schooling
(1) (2) (3) (4) (5) (6) (7) (8)

# Worker-years # Unique workers Mean St.d. Mean St.d. Mean St.d.
1988–1992 85.4 (98.7%) 25.1 (98.4%) 1.3 0.9 33.3 10.8 7.0 4.3
1992–1996 85.6 (98.1%) 25.8 (97.7%) 1.3 0.9 33.9 10.8 7.4 4.3
1996–2000 90.2 (97.3%) 27.9 (96.8%) 1.3 0.8 34.0 10.8 7.8 4.2
2000–2004 102.1 (97.0%) 31.4 (96.6%) 1.1 0.8 34.2 10.9 8.7 4.0
2004–2008 123.7 (97.4%) 36.2 (97.1%) 0.9 0.8 34.4 11.1 9.5 3.8
2008–2012 151.0 (98.0%) 42.8 (97.5%) 0.8 0.7 34.9 11.3 10.1 3.6

Notes: We report in parentheses the proportion of the reported statistics relative to the group of adult males
described in Table 1. Earnings are in log multiples of the minimum wage, schooling is years of education.

As identification critically derives from workers switching between firms, Table 4 presents

statistics on the fraction of switchers in each subperiod. The degree of labor mobility is high in

Brazil with more than 30 percent of the population switching firm at some point in the subperiod.

The average number of firms worked at during the five years in each subperiod is about 1.5. There

is no strong trend in either statistic.

The assumption we impose on the error term is often referred to in the literature as that of

requiring exogenous mobility. As explained by AKM, this rules out dependency of the error term

on the worker effect, the firm effect or the time controls. In particular, a worker is not allowed to

switch between firms based on the unobserved error term, because if say matches with a partic-
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Table 4. Frequency of switches, by period

(1) (2) (3)
# Unique workers Average # of jobs % switchers

1988–1992 25.1 1.55 0.36
1992–1996 25.8 1.47 0.32
1996–2000 27.9 1.44 0.31
2000–2004 31.4 1.45 0.31
2004–2008 36.2 1.53 0.36
2008–2012 42.8 1.64 0.40

Note: Number of unique workers in millions. A switcher is defined as
a worker who is associated with two or more employers during the period.

ularly poor match effect are more likely to break up, the residual of remaining matches does not

have mean zero. Moreover, this assumption rules out assortative matching of the type found in

Roy models, since these models emphasize the complementarity in matches between workers and

firms, whereas the AKM framework imposes log-additivity between the two.

We investigate whether this assumption is violated in two ways. First, we follow Card et al.

(2013) in dividing estimated firm effects into quartiles and investigate whether the gain in the firm

component of those switching between for instance the first and fourth quartile is similar to the

loss of those making the reverse switch. To the extent that the labor market is better characterized

by assortative matching as in Roy models, we would expect these to be very different. Second,

we examine the distribution of error terms across worker and firm effects quantiles to check for

systematic variation, which could be an indication that our log additive model is misspecified.

Based on our estimated equation, we decompose the variance of log earnings within any sub-

period into the variance of the worker component, the firm component, the year trend and the

residual, as well as the covariance between the worker and the firm component, the worker and

year component, and the firm and year component:

Var (log yit) = Var (ai) + Var
⇣

aJ(i,t)

⌘
+ Var (Yt) + 2Cov

⇣
ai, aJ(i,t)

⌘

+2Cov (ai, Yt) + 2Cov
⇣

aJ(i,t), Yt

⌘
+ Var (# it) (1)

We note that sampling error in the estimated person and firm effects will cause us to overestimate

the variance of worker and firm effects and induce a negative bias in the covariance between

worker and firm effects. To better estimate firm effects, Bonhomme et al. (2015) suggest restricting

attention to firms whose fixed effect is “well-identified” due to a high number of switchers. In
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practice, this procedure boils down to restricting attention to workers at firms with at least 10

switchers during the estimation period. With this restriction, we find a slightly more pronounced

role for worker effects in explaining both the initial levels and the decline of earnings inequality

between 1996–2000 and 2008–2012. In ongoing work, we are working on further improving our

algorithm and sample selection.

5.2 Factors influencing the estimated firm and worker effects

In the second stage of our empirical investigation, we study how the estimated firm effects relate

to observable measures of firm performance available in the PIA survey. In particular, we are in-

terested in understanding what firm characteristics are related to pay, and whether any changes in

the distribution of firm effects over time can be explained by underlying changes in firm charac-

teristics or the way the labor market translates those into pay. Since the PIA only covers the set of

large manufacturing and mining firms,19 we are forced to restrict attention to only these firms and

workers when linking firm effects to firm characteristics. We implement this by first estimating

the AKM model for the universe of firms and then subsequently restricting attention to only large

firms.

Since the firm component of earnings is fixed at the subperiod level, all our results below

are for subperiods. Consider a given subperiod and let aj be the estimated firm component of

pay, VAj average log value added per worker during the subperiod, REVj average revenues per

worker, CAPj a firm’s capital stock, FTEj the number of full-time equivalent workers, EXPORTj

the ratio of exports to revenues at the firm, and ENTRYj and EXITj dummies denoting whether

the firm entered or exited during the subperiod.20 For each subperiod, we regress versions of

aj = g0 + g1VAj + g2REVj + g3FTEj + g4CAPj + g5EXPORTj + g6ENTRYj + g7EXITj + # j

All our regressions are run at the firm-subperiod level and weighted by employee-years. We

report results both with and without subsector controls.

As we will show, value added per worker is by far the most important determinant of the firm

19As described in Section 3, we restrict attention to the deterministic stratum of PIA containing only large firms. We
drop small firms contained in the random stratum to ensure that firms stay in the sample for multiple years for our
estimation procedure below.

20Importantly, the exit and entry indicators denote whether a firm completely exited or entered the formal sector, and
not whether it entered or exited the PIA subpopulation of firms.
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component of pay. Thus, to investigate further the role of value added per worker, we set all other

coefficients to zero and regress in each subperiod the firm effect on a constant and a linear term in

average log value added per worker,

aj = g0 + g1VAj + # j

Based on the estimated coefficient, we calculate the variance of the predicted firm effects as

Var
�
âj
�
= (ĝ1)

2 Var
�
VAj

�

In order to isolate the importance of a compression in firm fundamentals versus a compression

in the pass-through from such fundamentals to pay, we consider two counterfactuals. In the first,

we keep ĝ1 constant at the estimated level in 1996–2000 and let the variance of value added per

worker change as in the data. The second results from keeping the variance of value added per

worker at its 1996–2000 level and letting the estimated coefficient ĝ1 change as in the data. A

comparison of the two counterfactuals allows us to address whether a change in the variance of

firm pay is explained by changes in the underlying dispersion in value added per worker across

firms or due to a change in the degree of pass-through from firm value added to worker pay.

6 Results

In this section, we first present the results from our two-way fixed effects model decomposing

earnings inequality into a firm and a worker component. Second we discuss the importance of

sectors for changes in the firm component of pay. Thirdly, we investigate the role of a reallocation

of workers across firms versus an intrinsic change to the way firms compensate their workers.

Fourth, we relate the firm components of pay to underlying characteristics of firms, and finally

we investigate the assumptions imposed by our econometric model.

6.1 AKM decomposition

Table 5 presents the variance decomposition from equation (1) based on the results of the AKM

estimation for each five-year subperiod from 1988 to 2012. To illustrate this decomposition over

time, Figure 6 plots the variance of raw earnings (blue circles), the variance of estimated worker
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effects (red squares), and the employee-weighted variance of firm effects (green diamonds) in each

subperiod. At least two important conclusions can be drawn from our estimation results. First,

although firm heterogeneity is a non-negligible source of earnings inequality, worker heterogene-

ity is the single most important factor. In the 1996–2000 subperiod the variance of worker fixed

effects is 48 percent of the variance of total earnings. This increases monotonically to 56 percent

in the last subperiod. The variance of firm fixed effects is 23 percent of the variance of earnings in

the 1996–2000 subperiod and decreases to 15 percent in the last subperiod.

Second, in terms of explaining changes over time, we observe a disproportionate fall in the

variance of firm effects. Between 1996–2000 and 2008–2012, the variance of firm effects falls from

17 to eight log points whereas the variance of person effects falls from 35 to 29 log points. Addi-

tionally, the declining variance of each component is reflected in a lower covariance between the

two (the correlation between worker and firm effects remains fairly constant at about 0.25). Given

the large role played by firms in the decline, it is important to understand what led firms to pay

more equally over time.

Figure 6. Variance decomposition from AKM model with firm and worker fixed effects
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When studying the link between firm effects and firm performance, we are limited to the man-

ufacturing and mining sector for which we have data on firm performance and characteristics.21

Table 6 compares AKM estimates for this subpopulation with the overall population. The over-

21As noted earlier, we impose the restriction to the PIA subpopulation after estimating the AKM model on the entire
population of prime age males.
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all variance of log earnings is five log points higher in the PIA subpopulation in the 1996–2000

subperiod. It first falls at a slightly slower pace than in the overall population, then at a slightly

faster pace, so that in the last subperiod the overall variance is again five log points greater. The

variance of worker effects is two log points higher in the 1996–2000 subperiod and four log points

greater in the 2008–2012 subperiod. The variance of firm effects is two log points less in both the

1996–2000 and 2008–2012 subperiods. We conclude from this that trends in inequality are similar

in the PIA subpopulation as in the overall population.

6.2 The importance of sectors

We start our investigation of the firm component by investigating the importance of sectoral differ-

ences in the firm component of pay. These decompositions are done for the entire subpopulation

of prime age males. To this cause, we follow the strategy used in Section 4 to decompose a trend

into a between and within component. In each subperiod, we calculate the average firm effect and

the variance in firm effects within 26 sectors. Subsequently, we compute the variance of the aver-

age as our measure of between-sector variance and the average of the variance as the within-sector

variance. All calculations are weighted by worker-years.

Figure 7 plots the results. Most inequality arises within sectors, but there are also differences

in means across sectors. In 1996–2000 (2008–2012), about 20 (16) percent of the overall variance

of firm effects arises across sectors. Over this period, the within-sector variance of firm effects

rougly halves whereas the across-sector variance falls by 65 percent. However, as within-sector

inequality is most important in levels, the fall in this accounts for 76 percent of the overall fall in

the variance of firm effects.
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Figure 7. Firm effects within and across sectors
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The precence of differences in means across sectors implies that some of the between-sector

compression could be because of a reallocation of workers towards more equally paying sectors.

Hence it need not be that sectors became fundamentally more equal in terms of pay. Further-

more, although we did not report it above, there are differences across sectors in the within-sector

variance of the firm component of pay. Thus a decline in the within-sector variance of firm effects

could have been driven by a reallocation of workers towards less unequal sectors, and not because

sectors became fundamentally more equal.

To investigate the importance of reallocation versus intrinsic compression, we hold the dis-

tribution of workers across sectors constant at its 1996–2000 level and compute the within- and

between-sector variance using these constant weights. As can be seen from Figure 8, holding the

distribution of workers across sectors constant has essentially no impact on either the within- or

the across-sector variance of firm effects. We conclude that most of both the level and the fall in

the variance of firm effects happens within sectors, and almost all of the fall is due to firms within

sectors becoming fundamentally more similar in terms of pay.
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Figure 8. Firm effects within and across sectors, the role of composition
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6.3 Underlying distribution of firms vs. allocation of workers

The reduction in the dispersion of the firm-specific component of pay could be decomposed into

two sources. Firstly, firms could have intrinsically become more equal over time. Secondly, firms

could have remained just as unequal, but a reallocation of workers across firms could have re-

sulted in a more equal distribution of firm-specific pay. A way to assess which of these forces is

more prominent is looking at the unweighted distribution of firm effects, since by construction

this holds the weight placed on each firm constant.22 This thus investigates any change in the

underlying distribution of firm effects. The left pane of Figure 9 shows a significant and mono-

tonic compression in the unweighted distribution of firm effects over time, indicating that firms

fundamentally became more similar over time in terms of pay.

Conversely, in order to investigate the importance of worker movement between firms in ex-

plaining the inequality decline, we rank firms in each subperiod based on their estimated firm

effects. Subsequently, we consider the distribution of workers across firm ranks. If workers have

reallocated across firms so as to produce a more equal distribution of firm effects, we would ex-

pect the distribution of workers across firm ranks to compress. As can be seen in the right pane of

22Subject to the caveat that we do not observe firm effects for firms after they have exited and before they have
entered, and thus they get a weight of zero both in the weighted and unweighted distribution. We discuss in detail the
role of entry and exit below.
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Figure 9, there is little evidence of such reallocation of workers. We conclude that most of the com-

pression in in the firm component of pay appears to be driven by firms fundamentally becoming

more similar in terms of pay.

Figure 9. Allocation of workers vs. underlying firm effects distribution

(a) Unweighted firm effects distribution
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(b) Allocation of workers across firm effect ranks
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Table 7 investigates the importance of entry and exit of firms for the level and trend in the vari-

ance of firm effects by comparing the overall variance of firm effects to that among only incumbent

and only non-exiting firms in each period. To the extent that new firms meaningfully affect the

variance of firm effects, we would expect the total variance to be significantly different from the

variance among only incumbent firms. Similarly, if the exit of firms had an important impact on

inequality, we would expect the variance of non-exiting firms to be significantly different from the

total variance.

Comparing row one and two in Table 7, the variance of incumbent firms is very similar to

the total variance. Thus, the entering of firms does not meaningfully affect the overall variance

of firm effects. Similarly, non-exiting firms in row three are not much different from the overall

population of firms. We conclude from this that exit and entry of firms does not significantly affect

the overall variance of firm effects. As a corrollary we find little scope for the churning of firms to

be an important driver behind the decreasing dispersion of firm effects over time.
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Table 7. Variance of firm effects with and without entrant and exiting firms

(1) (2) (3) (4) (5) (6)
1988–1992 1992–1996 1996–2000 2000–2004 2004–2008 2008–2012

Total variance 0.16 0.18 0.17 0.13 0.09 0.08
Variance of incumbents 0.15 0.17 0.16 0.13 0.09 0.08
Variance of non-exiters 0.15 0.18 0.17 0.13 0.09 0.08
Note: A firm is an entrant if in any year during the subperiod it existed but it did not exist the year
before. A firm is an exiter if it existed in any year during the subperiod but not in the subsequent year.

6.4 The link between firm effects and firm characteristics

Given that a reduction in dispersion of firm effects has been an important element in the decline, a

natural question is whether differences in pay at the firm level are related to observable character-

istics of the firm and whether changes in such observable characteristics can explain the changes

we observe in the firm-specific component of pay over time. Using measures of firm performance

from the PIA data, Table 8 reports results from regressing estimated firm effects on firm character-

istics, controlling for two-digit subsectors.

Several features are worth highlighting. First, both value added per worker and firm size are

associated with higher firm components of pay (the same is true for revenues per worker and

capital per worker). Exiters also appear to pay more, whereas there is no consistent, statistically

significant difference between entrants and non-entrants. In the early periods, a greater export

intensity was associated with a lower firm effect, but this appears to have vanished over time.

Overall, from a cross-sectional standpoint, larger and better performing firms have a higher firm

component of pay. Second, the amount of dispersion in firm effects explained by firm perfor-

mance is notable, with an R2 around 0.7. In fact, a linear regression of firm effects on a constant

and log value added per worker alone explains 47–58 percent of the variance in firm effects. As

adding additional measures of firm performance only boosts the explanatory power of the model

marginally, we focus our discussion below on the relationship between value added per worker

and the firm component of pay.

As can be seen in Table 8, the pass-through from value added per worker to the firm compo-

nent of pay declines substantially over time. In 1996–2000, a one log point increase in value added

per worker was associated with a 0.18 log point increase in the estimated firm effect; in 2008–2012,

the same increase in value added per worker was only associated with a .10 log point higher firm

effect. Translating this into inequality, we find that a change in the variance of value added per
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worker as well as the pass-through from it to pay explains 25 percent of the overall decline in the

variance of log earnings in Brazil over this period. The remaining four log point decline in the

variance of firm effects is due to factors orthogonal to value added per worker.

Table 8. Regression of estimated firm effects on firm characteristics

1996–2000 2000–2004 2004–2008 2008–2012
(1) (2) (3) (4) (5) (6) (7) (8)

V.a. p.w. 0.211*** 0.181*** 0.166*** 0.152*** 0.129*** 0.117*** 0.112*** 0.099***
(0.004) (0.004) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003)

Firm size 0.047*** 0.033*** 0.021*** 0.019***
(0.003) (0.003) (0.002) (0.002)

Export intensity -0.067*** -0.127*** -0.026* -0.013
(0.019) (0.016) (0.014) (0.014)

Exit indicator 0.093*** 0.079*** 0.069*** 0.029**
(0.017) (0.011) (0.011) (0.012)

Entry indicator 0.018 0.035** 0.017 0.044***
(0.016) (0.014) (0.014) (0.009)

Sector effects Yes Yes Yes Yes Yes Yes Yes Yes
Worker-years 15.5 15.5 16.7 16.7 21.0 21.0 23.9 23.9
R2 0.706 0.726 0.700 0.714 0.675 0.684 0.667 0.677

Note: Dependent variable is the estimated firm effect aj. Number of worker-years in millions. Standard errors in paren-
thesis. *** p<0.01, ** p<0.05, * p<0.1

To further quantify the importance of changes in the firm productivity distribution versus the

pass-through from productivity to pay, we consider the two counterfactual exercises outlined in

Section 5. Thus, we first hold the pass-through from value added per worker to the firm compo-

nent of pay constant at its estimated 1996–2000 value and allow only the variance of value added

per worker to change as in the data. Second, we hold the variance of value added per worker fixed

and change only the pass-through to match the data. Figure 10 plots the result from this exercise.

The total variance of firm effects (solid blue line with circles) declines from 15 to 6.5 log points,

the predicted variance from value added per worker holding pass-through constant (dashed red

line with squares) increases from eight to 11 log points, and the predicted variance holding the

dispersion in value added per worker constant (dash-dotted green line with diamonds) falls from

eight to two log points. We conclude that, ceteris paribus, a declining pass-through from firm

performance to pay contributed significantly to reduced earnings inequality in Brazil during this

period.
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Figure 10. Variance of firm effects, variance predicted by fixed pass-through and variance predicted by
fixed productivity dispersion
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6.5 Empirical support of the AKM model

Although the consistently high R2 of our model suggests that the model fits the data well, our

estimates can be biased if the residual is correlated with either the firm or worker component of

earnings. To investigate this further, we replicate two exercises conducted by Card et al. (2013) in

the case of Germany in our Brazilian data.

Figure 11 shows the average firm effect of workers who switch firms up to two years prior to

the swtich and two years after the switch for the first and last period of our sample. Switchers

are classified by the firm effect quartile of the pre and post transition firms. Consistent with the

AKM specification, workers that switch from the lowest quartile experience gains in firm effect

and workers that switch from the highest quartile experience losses. Additionally, the gains of

those switching up are similar to the losses of those making the reverse switch.23 This suggests

that our additive model is consistent with the pattern observed among workers who transition

between firms.
23For dispositional ease we only show switches out of the first and fourth quartile, but other quartiles display similar

pattern and are available on request.
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Figure 11. Average changes in firm effects of workers that switch firms, classified by firm effect deciles
of pre and post transition firms

(a) 1996–2000
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(b) 2008–2012
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Second, we find little evidence in the data for match effects that are systematically correlated

with either person of match effects. Figure 12 shows the average estimated residual by decile

of worker and firm effect. There is some evidence of misspecification for the lowest decile of
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workers in the sense that they display a systematically positive residual while working at the

lowest paying firms.24 However, the magnitude of the error is modest, and beyond the lowest

two deciles of workers errors do not exhibit any systematic relationship with firm and worker

effects. This boosts our confidence that the log additive assumption is a good description of the

Brazilian labor market.

Figure 12. AKM residual by firm and worker fixed effect deciles
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(b) 2008–2012
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7 Conclusion

In this paper, we estimate two-way fixed effects models controlling for unobserved worker and

firm heterogeneity in order to understand the sources of a substantial decline in earnings inequal-

ity in Brazil between 1996 and 2012. We find that while the firm-specific components of pay only

explain 15–23 percent of the variance of log earnings, a compression in firm effects explains 45

percent of the decline in earnings inequality. Worker effects, on the other hand, explain 48–56 per-

cent of the level of inequality, but only 28 percent of the decline. Thus compression in pay across

firms played an outsized role behind the decline.

Furthermore, although measures of firm performance are strongly positively correlated with

the firm component of pay, compression in such measures was not a factor behind declining in-
24The fact that they have a positive residual while working at high paying firms is mechanical since the residuals have

to sum to zero within each worker type. Although we do not investigate this further, it is consistent with a frictional
labor market with a binding minimum wage as in Engbom and Moser (2015).
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equality. Instead, we show that more than half of the compression in firm effects is due to a

declining pass-through from firm productivity to pay. In terms of overall changes in the distri-

bution of earnings, a declining pass-through from firm productivity to pay explains 25 percent of

the compression between 1996 and 2012. In ongoing work, we also decompose the compression

in worker effects into compression in observable worker characteristics, compression in the return

to such characteristics, and residual compression.

Our paper suggests a set of stylized facts that a potential theory of the inequality decline in

Brazil would have to match. Such a theory must generate pay differences between firms for iden-

tical workers, and such pay differences must be strongly positively correlated with firm produc-

tivity. Moreover, it needs to generate a compression in such pay differences over time, but not

through compression in firm productivity. Instead, it has to produce a significantly weaker link

between firm productivity and pay. We think that promising candidates behind the decline in

inequality in Brazil are changes in wage setting induced by for instance changes in the minimum

wage or labour contract regulation.
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Appendix

A Additional figures

A.1 Earnings levels evolution

Figure 13. Earnings levels evolution
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A.2 Alternative productivity measures

Figure 14. Cross-sectional comparison of alternative productivity measures
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Figure 15. Evolution of dispersion of alternative productivity measures
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A.3 Earnings inequality by education groups

Figure 16. Within education group inequality
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