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Abstract

This paper studies the role of slums in shaping the economic and health
dynamics of pandemics. Using data from millions of mobile phones in
Brazil, an event-study analysis shows that residents of overcrowded slums
engaged in less social distancing after the outbreak of Covid-19. We de-
velop a choice-theoretic equilibrium model in which poorer agents live
in high-density slums and richer individuals do not. The model is cali-
brated to Rio de Janeiro. Slum dwellers account for a disproportionately
high number of infections and deaths. In a counterfactual scenario with-
out slums, deaths increase in non-slum neighborhoods. Policy simulations
indicate that: reallocating medical resources cuts deaths and raises output
and the welfare of both groups; mild lockdowns favor slum individuals
by mitigating the demand for hospital beds, whereas strict confinements
mostly delay the evolution of the pandemic; and cash transfers benefit
slum residents to the detriment of others, highlighting important distri-
butional effects.
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“The issue is that everything is so close together here. One house next to the other; one
on top of the other. What looks like only a small one is actually five or six in the same
space. A lot of people here work outside of Paraisopolis. If the virus spreads here, it will
spread all over Sao Paulo.” Hebert Douglas, resident of Paraisopolis, one of the largest
slums in Brazil (Folha de São Paulo 2020)

1 Introduction

Disease outbreaks can affect vulnerable people disproportionately, contributing
to the increase in health and economic disparities. Since its onset, the Covid-
19 pandemic has affected places where most social interactions occur, as the
new coronavirus spreads mainly through close contact among people. Conse-
quently, health authorities recommend that people avoid crowded areas and
practice social distancing. Such measures can be challenging to put in practice
in densely populated areas, such as overcrowded slums in developing coun-
tries.1 Residents of these neighborhoods are also poorer individuals whose in-
comes are likely to be more adversely affected by lockdowns. Slums are preva-
lent in the majority of cities in developing countries and more than 1 billion
people in the world live in them (United Nations (2020)). Despite their impor-
tance, to the best of our knowledge, no paper in the growing literature on the
economics of epidemics has addressed the role of slums in shaping the eco-
nomic and health dynamics of pandemics. This paper fills this gap and makes
three contributions.

Our first contribution is empirical. We use daily geo-localized data from mil-
lions of mobile phones in Sao Paulo and Rio de Janeiro, the two largest cities in
Brazil, one of the countries most affected by the Covid-19 pandemic.2 Through
an event-study analysis, we show that social distancing increased significantly

1The definition of slums varies by country, but is always associated with deprivation-related
characteristics such as low-quality housing, lack of public services, overcrowding, and lack of
tenure security.

2Inloco (https://inloco.com.br/), a Brazilian technology company, shared the data on
social distancing. See Section 2 for details.
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less in areas with slums after the adoption of non-pharmaceutical interventions
(NPIs)—such as the closure of schools, restaurants and retail stores—in both
of these cities. We also find that areas with slums are associated with more
hospitalizations and fatalities.

The second contribution is theoretical. We build a model with heterogeneous
housing tenure and behavioral choices to address how the prevalence of slums
contributes to the spread of infectious diseases. Agents live in two localities:
poorer agents live in high-density places (slums), while richer agents do not.
Slum residents are also less likely to have access to intensive care units (ICUs)
in hospitals, but they are on average younger (as in the data). People leave
their houses to work or enjoy leisure outside and this can lead to infections.
Individuals from different locations interact when they leave their homes. The
model allows for both negative and positive externalities regarding social dis-
tancing. The risks that one group takes might spill over onto others through
increased transmission (negative externality), but the point of herd immunity
may be reached more quickly (positive externality).

The paper’s third contribution is quantitative. We parameterize the model to be
consistent with Covid-19 transmission and with key empirical moments of the
city of Rio de Janeiro, one of the epicenters of the pandemic in Brazil. The model
reproduces our empirical finding that, after the outbreak of the pandemic, low-
income slum residents engage in less social distancing relative to individuals
who live in other neighborhoods. As they are poorer, they work relatively
more hours even though this means spending more time in crowded areas.
This leads to worse health outcomes for this group. Although slum dwellers
correspond to 22% of Rio de Janeiro’s population, they account for around 30%
of the Covid-19 deaths in the city. This group thus contributes more towards
reaching herd immunity in society. In a counterfactual world without slums,
residents in other neighborhoods end up catching the virus more and die in
higher numbers, which illustrates important distributional effects.

We use the model to simulate a variety of policy experiments: the realloca-
tion of existing medical resources, shelter-at-home policies, and cash-transfer
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schemes. In developing countries, most poor individuals do not have private
health insurance and must rely on publicly provided health care that is often at
capacity. We investigate the pooling of all intensive care units in Rio de Janeiro
into one group that is offered to anyone who needs it, regardless of insurance.
This alleviates the capacity constraints and decreases the death burden of the
disease among both groups of the population. The total death rate is reduced
by 28% relative to an environment with no policies. In our simulations, this
redistributive policy positively impacts aggregate welfare and output.

Shelter-at-home policies act to delay the dynamics of the disease substantially.
In our model, though these policies buy time, the long-run death rate does not
change much. Interestingly, lighter policies can be more effective as they slowly
increase the number of infected, and this smooths the burden on hospital re-
sources and saves lives. On the other hand, very strict lockdowns contain the
disease so much that, when lifted, the health dynamics is quite similar to a no-
policy scenario, only delayed—if no improvement in health infrastructure takes
place or a treatment becomes available. In addition, strict lockdowns promote
a deep economic downturn in the short run. Confinement policies that shelter
one particular group lead to a redistribution of deaths from the sheltered group
to the other. This actually leads to the welfare of both groups decreasing: one
faces more deaths and the other a restriction on their movement.

Cash transfers are particularly important for the poorer individuals who live in
slums. When we implement a policy that hands over cash to the population,
slum dwellers can afford to become relatively more cautious. This decreases the
number of infections among this group and consequently increases this statistic
among those living in other neighborhoods. Once again, the resulting outcome
highlights important heterogeneous effects across groups.

This paper relates to the economics literature that adds behavioral choices to
epidemiological models in the tradition of Kermack and McKendrick (1927).
This effort has been mostly theoretical, e.g. Kremer (1996), Quercioli and Smith
(2006), and Toxvaerd (2019). There exists some quantitative articles in the con-
text of HIV/AIDS, such as Greenwood et al. (2017, 2019) and Chan, Hamilton,
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and Papageorge (2016). Our paper shares the principle of modeling infectious
diseases with a special attention to behavioral choices. We contribute to this lit-
erature by studying individual choices in slums, which are an important feature
in cities in the majority of developing countries.3

There has recently been a great incursion of the economics literature into the
study of the Covid-19 pandemic. Some papers have looked at optimal confine-
ment policies that force stricter levels of social distancing beyond what indi-
viduals endogenously choose, e.g. Farboodi, Jarosch, and Shimer (2020) and
Eichenbaum, Rebelo, and Trabandt (2020). A few papers have added choices
made by heterogeneous groups, like different sectors (Kaplan, Moll, and Vi-
olante (2020)) or age groups (Brotherhood et al. (2020) and Favero, Ichino, and
Rustichini (2020)). Our work is mostly related to Brotherhood et al. (2020) and
Alon et al. (2020). We expand the framework developed by Brotherhood et al.
(2020) by adding different locations (slums and other neighborhoods), poorer
and richer agents, and differential access to health care. Few quantitative pa-
pers focus on studying the Covid-19 pandemic in developing countries. One
notable exception is Alon et al. (2020), but they do not model slums and the
impact of high-density environments as we do.

Our work also relates to two strands of the urban economics literature. First, we
connect to the papers on agglomeration economies aiming to understand the
advantages and disadvantages of density in cities (Duranton and Puga (2004);
Ahlfeldt et al. (2015); Henderson and Turner (2020)). Most of the papers in this
field focus on the advantages of density and increased physical proximity, such
as sharing ideas, fostering innovation, and faster technology adoption (Duran-
ton and Puga (2020)). We add to some recent papers studying the costs of ag-
glomeration (e.g., Combes, Duranton, and Gobillon (2019)) by explicitly taking
into account externalities of physical proximity in the context of a pandemic.
Second, we add to the strand modeling the causes and consequences of slums
(e.g., Brueckner and Selod (2009); Monge-Naranjo, Ferreira, and Pereira (2018);

3From a historical perspective, the association between slums and pandemics goes well be-
yond the Covid-19 pandemic, including the cholera outbreak in the 1850s in London’s slums
(Smith (1964)) and the Spanish Flu outbreak in slums in Philadelphia (Crosby (2003)).
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Cavalcanti, Da Mata, and Santos (2019); Henderson et al. (2020)) by taking into
account the role of slums during disease outbreaks.

This paper is organized as follows. The next section presents an empirical anal-
ysis regarding how the Covid-19 pandemic evolved differently in slums and
other areas in Brazil. Section 3 describes the model environment and Section 4
discusses its calibration. Section 5 presents our baseline results and Section 6
provides results for policy experiments. Section 7 concludes.

2 Empirical Motivation

Slums are densely populated areas with narrow alleys and small houses. Some
informal settlements lack adequate sanitation and piped water supply. Poverty
is widespread. According to the 2010 Brazilian Population Census, the popu-
lation density in slums in the cities of Rio de Janeiro and Sao Paulo is approx-
imately five times larger than in other neighborhoods. In addition, per capita
income of households living in slums in these two cities is roughly one-third
of the income of those living in other areas. These features of slums imply that
movement restrictions are in general more costly for individuals living in slums
compared with those living in other neighborhoods. We hypothesize then that
it is harder to adhere to social distancing practices in slums.

To investigate how social distancing changed during the pandemic in areas
with and without slums, we use a social distancing index created and devel-
oped by Inloco (https://inloco.com.br/), a Brazilian technology com-
pany. The company collects anonymized location data from millions of mobile
phones in Brazil, tracking (with a 3-meter precision) the devices’ location and
movements to different places, but ensuring user privacy.4 The company di-
vides cities into non-overlapping “hexagons” and measures the percentage of
devices in a given hexagon that remained within a radius of 450 meters of the

4See Peixoto et al. (2020) for more details on the Inloco data. Ajzenman, Cavalcanti, and
Da Mata (2020) compare Inloco’s and Google’s social distancing indexes for Brazil and show a
high correlation between the two measures.
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location identified as home. The index is computed daily and ranges from zero
to one. We obtained the social distancing index for each hexagon from February
1 to May 30, 2020 (120 days) for two cities: Rio de Janeiro and Sao Paulo. Rio de
Janeiro has 841 hexagons, Sao Paulo 1,301 (see Figures A1 and A2 in Appendix
A for more details on the non-overlapping hexagons).

We define slums as housing units in “subnormal agglomerations.” According
to the population census, a subnormal agglomeration satisfies three conditions:
(i) it consists of a group of at least 50 housing units, (ii) where land is occupied
illegally and (iii) is urbanized in a disordered pattern and/or lacks basic public
services such as sewage or electricity. Notice that there is a connection between
housing units in subnormal agglomeration and the notion of a “slum.” See
online Appendix A for more detail on data sources and definitions.

Fact 1: Social distancing increased after non-pharmaceutical Interventions
(NPIs)

Figure 1 contains the daily average social distancing index for the cities of Rio
de Janeiro (Figure 1(a)) and Sao Paulo (Figure 1(b)). It shows that social dis-
tancing increased in both cities after NPIs were implemented. The first NPI
affecting the city of Rio de Janeiro was announced on March 11. One can ob-
serve a sharp increase in the social distancing index just a few days after this
measure was implemented. A similar pattern is observed for Sao Paulo, where
the first NPI was announced on March 13.

Fact 2: In slums, social distancing increased less after the adoption of NPIs

We now present reduced-form evidence showing an association between social
distancing and slums. The unit of investigation is the hexagon provided by
Inloco. We build a dataset of socioeconomic characteristics for each hexagon
based on the census tracts of the 2010 Brazilian Population Census conducted
by the country’s statistical office (Instituto Brasileiro de Geografia e Estatı́stica,
IBGE)—see Appendix A for more details—and combine this dataset with our
social distancing index. We then calculate the number of slum housing units
in each hexagon. We create a dummy variable that equals one if the hexagon
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Figure 1: Social distancing index
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(b) Sao Paulo
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Notes. The figure shows the evolution of the social distancing index for the cities of Rio de
Janeiro and Sao Paulo between February 1 and May 18. The first non-pharmaceutical interven-
tion in Rio de Janeiro was put in place on March 11 and in Sao Paulo on March 13.

has any slum within its boundaries and zero otherwise. Rio de Janeiro has 510
hexagons with slums; Sao Paulo has 598 (see Figure A3 in online Appendix
A for the location of those hexagons). The “treated group” is composed of
hexagons with slums, while the comparison group is composed of hexagons
without slums.

To investigate how social distancing evolved in slums compared to other areas
after the implementation of NPIs, we use the following event-study specifica-
tion:

Yht =
L∑

τ=−K

βτ1{tt − t∗ = τ}+ ωh + δt + εht , (1)

where Yht is the social distancing index for hexagon h on day t. The hexagon
fixed effect ωh accounts for unobserved time-invariant determinants of social
distancing, while the inclusion of time fixed effects δt adjusts for aggregate
shocks that are common to all hexagons. The indicator variable 1{tt − t∗ = τ}
takes the value of one for hexagons with slums when τ periods (days) away
from the day of the first NPI (t∗), and zero otherwise. The parameter βτ is the
dynamic treatment effect. We set the coefficient on β−1 equal to zero to use
the day before the first NPI as the base date—March 10 in Rio de Janeiro and
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Figure 2: Event-study Analysis: Effect of NPIs on social distancing in areas
with slums relative to those without slums
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Notes. The figure shows the results for coefficients estimated from Equation (1). Coefficients
should be interpreted as a change in percentage points relative to the base period, which cor-
responds to the day before each NPI. The “treated group” is composed of hexagons with at
least one housing unit in a slum. We use 841 hexagons in Rio de Janeiro and 1,301 hexagons
in Sao Paulo. Data are provided at the hexagon-day level. The dependent variable is the so-
cial distancing index for hexagon h on day t. Standard errors clustered at the hexagon level.
Confidence intervals: 95%.

March 12 in Sao Paulo.5 As the social distancing index is bounded between
0 and 1, each coefficient βτ should be interpreted as a change in percentage
points relative to the day before the first NPI. We cluster the standard errors at
the hexagon level and weight the observations by the hexagon population in
2010.6 The identifying assumption is that in the period of analysis, hexagons
with slums would have had similar trends in social distancing (compared to
hexagons without slums) in the absence of NPIs.

Figure 2 shows the results of the event-study analysis. Hexagons with and
without slums evolved similarly during the period before the NPIs in both
cities. This suggests the absence of different pre-trends in social distancing and
therefore yields support for the main identifying assumption. After the first
NPI, a sharp decline in social distancing (of about 4–5 percentage points) fol-

5Since we have data for 120 days starting from February 1, there are 39 and 41 pre-treatment
periods in Rio de Janeiro and Sao Paulo, respectively.

6Figure B4 in Appendix B shows that results are qualitatively similar when we do not use
population weights, but the point regression coefficients are less precisely estimated.
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lows in hexagons with slums, compared to those without slums.7 Indeed, the
results of a difference-in-difference strategy in Table B1 in online Appendix B
show a (statistically significant) average reduction of the social distancing index
of 3.9 and 4.3 percentage points in slum areas in Rio de Janeiro and Sao Paulo,
respectively.8

The adherence of individuals to social distancing measures is quite different in
areas with and without slums. Interestingly, the magnitude of the treatment
effect is similar in both Rio de Janeiro and Sao Paulo, but the coefficients are
more precisely estimated for the latter.

Fact 3: More Covid-19 deaths occurred in areas with slums than in areas with-
out slums.

The risk of Covid-19 transmission is higher in overcrowded areas that lack ac-
cess to basic sanitation and running water. Those are precisely some of the
characteristics of urban slums. In addition, one might expect that health facil-
ities would be more congested in areas near slums. People in slums usually
have less access to private health providers.9 Therefore, we would expect more
Covid-related deaths in areas with slums than in other neighborhoods.

Figure 3 provides descriptive evidence suggesting that places in Rio de Janeiro
and in Sao Paulo with more slums experienced more Covid-19 deaths.10 For the
city of Sao Paulo, we have geo-referenced data on hospitalizations and deaths
caused by Covid-19 and other acute respiratory diseases (see Appendix A).
We matched the geo-referenced data into hexagons to check the correlation be-
tween slums and hospitalizations/deaths. Due to constraints on the availability
of data, we could not conduct this analysis using the event-study specification.

7Figure B5 in Appendix B shows the results when we change the treatment dummy for the
share of slums in each hexagon. The qualitative implications are the same.

8In column (III) of Table B1 in Appendix B, we perform a “triple-difference” strategy and
show that the reduction in social distancing index was 0.43 percentage points lower in Rio de
Janeiro compared to Sao Paulo (but statistically not significant).

9Approximately 15% and 22% of the overall population have access to private health insur-
ance in Rio de Janeiro and Sao Paulo, respectively.

10Figure 3 uses Covid-19 death data at the neighborhood level (which is a group of hexagons),
as this is the most disaggregated level officially reported by both cities.

9



Figure 3: Slums and Covid-19 deaths

(a) Rio de Janeiro (b) Sao Paulo

Notes. The figure shows Covid-19 deaths for the cities of Rio de Janeiro on June 14 and Sao
Paulo on May 25. The percentage of slums in each area is from the 2010 census.

We then used the following cross-sectional specification:

Yh = α + γIh + εh,

where Yh is the outcome variable (hospitalizations or deaths) for each hexagon
h and Ih equals one for hexagons with slums and zero otherwise. The results
reveal statistically significant and positive correlations: hexagons with slums
have 11% more hospitalizations and 10% more deaths by Covid-19—and 36%
more hospitalizations and 7% more deaths by other respiratory diseases (see
Table B2 in Appendix B).11

11Serological tests in Brazilian slums support the claim that Covid-19 infections are higher in
slums and exceed official data (Prefeitura Rio de Janeiro (2020)). Due to data restrictions, excess
mortality data cannot be analyzed at the intra-city level in Brazil.
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3 Model

In this section, we present the model to study the role of slums in shaping the
economic and health dynamics of the Covid-19 pandemic. Assume a model
economy that evolves in discrete time.12 Suppose there are two groups of agents
in this economy: those who live in slums (or favelas), g = f , and others who do
not, g = o. Agents work, enjoy leisure outside their home, and home hours.
Home hours can also be seen as a proxy for home production. In the pres-
ence of the new coronavirus, denote the agent’s status by j. A healthy agent is
denoted by j = h. By spending time outside the house, the agent may catch
Covid-19. If the agent becomes infected, he is denoted by j = i. Conditional
on being infected, the agent may either recover (with probability φ(0, g)) or de-
velop more serious symptoms (with probability α(g)). Denote an agent with se-
rious symptoms by j = s. Someone with serious symptoms may either recover
(with probability φ(1, g)) or die (with probability δt(g)). The death probability is
time varying as it may depend on the usage of scarce hospital resources. Such
resources may also be different across the two groups. Moreover, we assume
that the average slum resident is younger (as in the data). This reflects differ-
ent recovery and death probabilities across groups. If an individual recovers
(j = r), he is assumed to be immune to the disease forever. Agents discount the
future with factor β ∈ (0, 1).

An individual is endowed with one unit of time per period that may be used for
work n, leisure outside the house `, and hours at home d (‘’domestic” hours).
The time constraint thus reads:

n+ `+ d = 1. (2)

An individual derives utility from consumption c, a composite leisure good
when he leaves home a, and domestic hours d. The good a is produced us-
ing hours ` and buying “intermediate” goods x according to the function a =

12Our model builds on the framework developed by Brotherhood et al. (2020).
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a(x, `). We normalize the utility after death to zero and capture the bliss from
being alive through a parameter b. The utility function is given by:

u(c, a, d; j, g, p) = ln c+ γ ln a+ [λd + λ(j) + λp(j, g)] ln(d) + b.

The term λ(j) expresses an additional preference for staying at home when
infected and is supposed to capture some partial altruism. This variable can
take two levels: λ(s) = λ(i) = λa and λ(r) = λ(h) = 0, so that individu-
als who can transmit the virus are partially altruistic and the others have no
need for that; λp(j, g) has a similar role, but from the point of view of the
government.13 This captures simple policies that confine all groups to stay-
ing at home (λp(j, g) = λ̄p) but can also capture group-specific confinements
(λp(j, g) = λ̄p(g)) and even condition on infection status.

An individual’s income consists of two terms. The first is labor income w(g)n.
Note that the wage per unit of time can vary by group. The second term corre-
sponds to government transfers and can be time dependent. Denote it by wp(g).
The budget constraint of the agent is given by:

c+ x = wp(g) + w(g)n. (3)

A healthy individual (j = h) may become infected when he strays from home.
The longer one spends outside, the more likely it is that an infection takes place.
For each hour spent outside the house, the transmission risk is given by Πt(g).
Note that this is time varying as it depends on two aggregate variables: (i) the
fraction of infected people in the economy and (ii) the time infected people
spend outside their houses. It can also be group specific as individuals from
different groups may be more exposed to one group versus the other, due to
differences in the density in their neighborhoods, for instance. This will be
elaborated on later. The probability of catching the virus in a given period t is
given by

π(n+ `,Πt(g)) = (n+ `)Πt(g). (4)

13The subscript p denotes that λp(j, g) is a policy instrument.
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We turn now to decision making. The problem of a healthy individual is de-
scribed by the following maximization problem:

Vt(h, g) = max
c,x,n,`,d

u(c, a(x, `), d;h, g, pt)+ (5)

β{[1− π(n+ `,Πt(g))]Vt+1(h, g) + π(n+ `,Πt(g))Vt+1(i, g)}

subject to (2) and (3).

The first line in this problem corresponds to the instantaneous utility from con-
sumption and leisure. The second line spells out the continuation value. The
first term in curly brackets represents the situation in which the individual does
not get infected this period and continues life as a healthy person in the next
period. The second term denotes the case in which the agent gets infected today
and continues life as an infected individual in the next period.

The value function for an infected person who has not developed severe symp-
toms of the disease is given by

Vt(i, g) = max
c,x,n,`,d

u(c, a(x, `), d; i, g, pt) + βφ(0, g)Vt+1(r, g)+ (6)

β(1− φ(0, g))[α(g)Vt+1(s, g) + (1− α(g))Vt+1(i, g)]

subject to (2) and (3).

The first line captures the instantaneous utility from consumption and leisure
and the situation in which the agent recovers from the disease. The second line
is the continuation value in which the agent either develops serious symptoms
(first term in square brackets) or continues life as an infected person (second
term).

Set the flow utility for an individual with serious symptoms (j = s) to the same
as death (i.e., zero). These individuals may still recover and enjoy utility from
consumption, leisure, and bliss of life later. These agents do not work, but we
assume they interact with people in the hospital and may thus infect others.
Set an exogenous amount of time they interact with their carers to ` = ¯̀

s. Their
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value function thus reads as follows:

Vt(s, g) = β [φ(1, g)Vt+1(r, g) + (1− φ(1, g))(1− δt(g))Vt+1(s, g)] (7)

This value function consists of two scenarios: the first term corresponds to the
patient recovering from his symptoms and the second term represents the case
in which he continues life in the hospital. With the remaining probability, he
dies and his utility is normalized to zero.

Finally, an agent who has already recovered and is resistant to the virus enjoys
utility:

Vt(r, g) = max
c,x,n,`,h

u(c, a(x, `), d; r, g, pt) + βVt+1(r, g) (8)

subject to (2) and (3).

It is important to keep track of the number of agents who find themselves in
each of the situations described earlier. Denote the measure of agents of each
type j of group g in period t by Mt(j, g). Let Mt be the set of these for all js
and gs. Moreover, let nt(j, g) and `t(j, g) denote the policy function for hours
worked and outside leisure, respectively, for each agent. Let the equilibrium
time allocations in period t across all j and g be summarized in Nt. The law of
motion from one period to the next is represented by the mapping T :

Mt+1 = T (Mt,Nt,Πt(o),Πt(f)). (9)

The law of motion for healthy people of a group g reads as follows:

Mt+1(h, g) = Mt(h, g) [1− π(nt(h, g) + `t(h, g),Πt(g))] . (10)

That is, the measure of healthy people next period consists of those who are
healthy today and did not catch the virus. The right-hand side of (10) thus
describes the mapping Th for healthy individuals. The corresponding equations
for the other groups are provided in Appendix C. The aggregate mapping in (9)
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is given by the collection of all Tj .

Aggregate output in this economy is given by all the work supplied by agents
of the different groups and infection statuses multiplied by their wages:

Qt =
∑
j,g

w(g)nt(j, g)Mt(j, g). (11)

Turn now to the calculation of the probability of getting infected per unit of time
spent outside. First, let Π0 represent an exogenous transmission rate from in-
fected to susceptible. Now, assume that, when outside their homes, both groups
(those who live or do not live in favelas) spend a fraction 1 − ζ of their time in
a common space shared by everyone. The remaining ζ fraction of their time is
spent only among members of the same group (f or o). These group-specific
activities are undertaken within separate areas for each group. Denote by ξg

the fraction of the space that is assigned to group g. This is supposed to rep-
resent the fact that slums have a much higher density than the rest of a city.
Slum dwellers thus have to interact in much more confined spaces, and this
contributes to a faster spread of the virus. We then have the following:

Π̂t(g) = (1− ζ)Π0

∑
g̃,j∈{i,s}

(nt(j, g̃) + `t(j, g̃))Mt(j, g̃) (12)

+ζΠ0

∑
j∈{i,s}

1

ξg
(nt(j, g) + `t(j, g))Mt(j, g).

Note that when ζ = 0, this expression reduces to a pure random-mixing situa-
tion.

The parameter Π0 is usually calibrated to match a basic reproduction number
(R0) at the outbreak of the epidemic. This number can be high enough such
that it drives equation (12) to more than 1 because we do not control for the
possibility of multiple infections in a given period. To avoid this, we take a
continuous-time approximation that yields:

Πt(g) = 1− e−Π̂t(g). (13)
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If Π̂t(g) is small, then Πt(g) ≈ Π̂t(g).

We now define the probability that an agent with serious symptoms (j = s)
dies, δt(g). This is time varying, as it depends on the supply of scarce hospi-
tal resources (e.g., ICU beds) and the demand by sick patients. Suppose there
are two networks of medical services: a public one to which everyone has ac-
cess and a private one. Only individuals with health insurance can access the
private network. Let Zpub and Zpriv be the number of beds in the public and pri-
vate hospitals, respectively. Assume also that no slum dweller (f ) has access to
health insurance and therefore to private hospitals. For the others (o), a fraction
ψ has health insurance.

Let Upub and Upriv be the number of users in the public and private networks,
respectively. These are given by

Upub = Mt(s, f) + (1− ψ)Mt(s, o), (14)

Upriv = ψMt(s, o),

where Mt(s, g) is the number of type-g agents who have serious symptoms.

Assume that an individual with serious symptoms who has access to a hospital
bed dies with probability δ̃1(g). Those without access to a hospital bed die with
probability δ̃2(g).14 The death probability for individuals living or not living in
slums is given by the following two equations:

δ(f) = δ̃1(f) min

{
Zpub
Upub

, 1

}
+ δ̃2(f) max

{
Upub − Zpub

Upub
, 0

}
,

δ(o) = ψ

[
δ̃1(o) min

{
Zpriv
Upriv

, 1

}
+ δ̃2(o) max

{
Upriv − Zpriv

Upriv
, 0

}]
(15)

+ (1− ψ)

[
δ̃1(o) min

{
Zpub
Upub

, 1

}
+ δ̃2(o) max

{
Upub − Zpub

Upub
, 0

}]
.

The first line spells out the probability of death for a slum dweller with serious
symptoms. This only depends on the excess demand for hospital beds in the

14We assume the death probabilities to be group specific to reflect different age structures
across the two neighborhoods. See Section 4 for details.
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public network. The second and third lines show the same for other agents.
Now, with probability ψ, they have access to the private network through their
health insurance. With complementary probability, they use the public hospital
network.

A rational-expectations equilibrium in this economy with initial number of agents
M0(j, g) consists of a sequence of infection and death rates {Πt(g), δt(g)}∞t=0 and
equilibrium time allocations {nt(j, g), `t(j, g)}∞t=0 such that these time allocations
are part of the solutions to the individual optimization problems (5) to (8), and
the resulting law of motion (9), and their aggregation in (13) and (15) indeed
gives rise to the sequence {Πt(g), δt(g)}∞t=0.

4 Fitting the Model to the Data

To analyze the role of slums in the Covid-19 pandemic, we must assign values
to the model parameters. There are 30 parameters to be set. Some (24 param-
eters) are externally calibrated and others (6 parameters) are chosen such that
certain model moments match their empirical counterparts. We focus our anal-
ysis on the city of Rio de Janeiro. Given that this is a framework to understand
social behavior during a pandemic, we set the model period to one week.

City parameters: According to the 2010 Brazilian census, 22% of Rio de Janeiro’s
population live in slums (or favelas). We normalize the area of the model city
to one. Then, given the share of the population living in slums (22%) and the
population density in areas with slums relative to those without slums (4.05),
we have the fraction of space assigned to slums as ξf = 0.065.15

The proportion of time individuals spend with members of their same group
is given by ζ . We set ζ = 0.334. This corresponds to the fraction of time spent
outside that is not work related. The implicit assumption is that work-related

15The population density in areas with and without slums in the city of Rio de Janeiro is
from the 2010 census data. Population density in Rio de Janeiro’s slums is about 25,701.18
individuals per square kilometer and in areas without slums it is 6,344.46. The difference is a
factor of four.
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activities take place across all groups whereas leisure outside is separate for
each group.

We normalize the wage rate of individuals who do not live in slums to one,
that is, w(o) = 1. We then set the wage rate of agents who live in slums to
w(f) = 0.277. Therefore, the relative hourly wage per capita of individuals
who live in slums to those who do not is 27.7%, which is the number observed
in the 2010 census data for Rio de Janeiro.

Panel A of Table 1 reports the values of the parameters related to Rio de Janeiro.
The third column (“Interpretation”) contains a comment on how each parame-
ter was set.

Disease transmission and development: We now turn to parameters that con-
trol the transmission and disease development of Covid-19. To discipline how
infectious the disease is, we target the basic reproduction number, R0. Ap-
pendix D.1 describes how we can compute this statistic in the model. The pa-
rameter Π0 determines the per-period transmission rate in the model and is
intimately related to R0. We thus pick Π0 to target a value of 2.5 for the basic
reproduction number. This lies within the range used by Atkeson (2020). Fer-
guson et al. (2020) use R0 = 2.4 while Zhang et al. (2020) estimate it to be 2.28.
Remuzzi and Remuzzi (2020) report values between 2.76 and 3.25. This yields
Π0 = 11.43.

We set α(g) = 1 for both groups. This implies that an individual who is in-
fected with Covid-19 spends one week with mild symptoms and then either
recovers or becomes critically ill. To determine the probabilities of recovery, we
turn to medical data. CDC (2020) reports age-specific transition rates between
infection and ICU care, and from ICU to death. We aggregate these using Rio
de Janeiro’s population pyramids for both slums and other areas, which come
from the 2010 Brazilian census. This yields a 2.1% chance that someone in a
slum who is infected ends up with serious symptoms; the counterpart for other
areas is 2.9%. Moreover, the probability of death conditional on being critically
ill is 15.5% for slum residents and 22.9% for other individuals. The lower prob-
abilities for hospitalization and death for slum residents is a consequence of a
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Table 1: Calibration and estimation of model parameters: City of Rio de Janeiro

Parameter Value Interpretation
Panel A: City parameters (6 parameters)∑

jM0(j, f) 0.222 Fraction of people living in slums (calibrated)
w(o) 1 Wage rate of non-slum agents (calibrated)
w(f) 0.277 Wage rate of slum agents (calibrated)
ξf 0.065 Frac. of space assigned to slums (calibrated)
ξo 0.934 Frac. of space assigned to areas wo slums (calibrated)
ζ 0.334 Prop. of time spent within group (calibrated)

Panel B: Disease parameters (15 parameters)
Π0 11.43 Infectiousness of Covid-19 (internatlly estimated)

α(o), α(f) 1 Prob. (serious symptoms | no recovery from mild) (calibrated)
φ(0, o) 0.971 Prob. of recovery from mild Covid-19, other (calibrated)
φ(0, f) 0.979 Prob. of recovery from mild Covid-19, slum (calibrated)

φ(1, o), φ(1, f) 0.284 Prob. of recovery from serious Covid-19 (calibrated)
δ̃1(o) 0.118 Wkly death rate, other; critically ill with ICU (calibrated)
δ̃1(f) 0.073 Wkly death rate, slum; critically ill with ICU (calibrated)

δ̃2(o), δ̃2(f) 1.0 Wkly death rate; critically ill wo ICU (calibrated)
¯̀ 0.158 Infections through the health care system (calibrated)
ψ 0.152 Prop. non-slum agents with priv. insurance (calibrated)
Zpub 8.12e-5 Measure of beds in public system (calibrated)
Zpriv 4.9e-4 Measure of beds in private system (calibrated)

Panel C: Preference parameters (7 parameters)
ρ -1.72 Elast. of subst. bw leisure time and goods (calibrated)
θ 0.108 Production of leisure goods (internally estimated)
γ 1.089 Rel. utility weight–leisure goods (internally estimated)
λd 2.453 Rel. utility weight–leisure at home (internally estimated)
λa 1.995 Rel. utility weight–leisure at home; infected (calibrated)
β 0.961/52 Discount factor (calibrated)
b 8.575 Value of being alive (internally estimated)

younger population living in these neighborhoods. We turn these probabilities
into weekly rates to conform with our chosen model period.16 Moreover, Verity
et al. (2020) report that a critically ill patient is discharged from the ICU after
around 24.7 days, or 3.52 weeks. We assume the same length of treatment for
both groups. This yields weekly probabilities of recovery from mild symptoms
of φ(0, f) = 0.979 and φ(0, o) = 0.971, weekly probabilities of recovering from
the ICU of φ(1, g) = 0.284 for all g, and weekly death probabilities conditional

16See Appendix D.2.
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on being in the ICU of δ̃1(f) = 0.073 and δ̃1(o) = 0.118. We assume the death
probability of a patient with serious symptoms who does not have access to an
ICU bed to be δ̃2(g) = 1 for all g.

Note that we assumed that a patient who is being treated in the ICU does not
work or enjoy leisure but still interacts with others and may infect them. The
amount of time in the model during which this interaction takes place is given
by ¯̀. Butler et al. (2018) estimate ICU patients interact with doctors, nurses, and
other people around 7.6 hours a day. Since this is a controlled environment, we
use half this number to determine infections. This yields ¯̀= 0.158.

Panel B of Table 1 summarizes the calibrated values of the parameters related
to the Covid-19 pandemic.

Preference parameters: We assume that the composite leisure good a is pro-
duced according to the following function: a = [θxρ + (1 − θ)`ρ]1/ρ. Following
Kopecky (2011), we set ρ = −1.72. This yields an elasticity of substitution be-
tween leisure and goods of 0.368, which means they are complements.

We set the preference parameters θ, γ, and λd to target three data moments re-
lated to time use and expenditures in Brazil. First, we target the fraction of
income spent on goods consumed outside the home.17 According to the Brazil-
ian expenditure survey (POF), individuals in Rio de Janeiro spend on average
27.82% of their income on goods outside the home.18 Second, we target the av-
erage weekly hours at work. According to the 2019 national household survey
(PNAD-C), Rio de Janeiro residents spend 34.2 hours per week at work.19 As-
suming an endowment of 112 non-sleeping weekly hours, this yields the frac-
tion 0.306 for their time spent at work. Third, we target the leisure time outside.
In Brazil, the average person spends around 17.2 hours a week outside, which

17As do Brotherhood et al. (2020), we classify the following items of the consumption basket
as goods consumed outside: food away from home, public transportation, medical services,
and entertainment.

18The expenditure survey POF is the Pesquisa de Orçamento Familiar for 2008–09.
19The national household survey PNAD-C is the Pesquisa Nacional por Amostra de Domicı́lios

Contı́nua. We get the average hours worked per week and multiply by the share of people who
have a job or are self-employed.
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corresponds to the fraction 0.154 of their endowment of non-sleeping hours.20

The parameter λa denotes the increase in the marginal utility of staying at home
for agents who are infected with Covid. This parameter is related to the extra
amount of time an individual spends at home without any influence from the gov-
ernment. To identify this parameter, we turn to how agents behave when they
contract influenza. Akazawa, Sindelar, and Paltiel (2003) report that the aver-
age American worker takes 1.3 days of sick leave when infected with influenza.
Given a 40-hour workweek, this implies an average of 10.4 hours. We assume
that the same would happen with Covid. As the disease lasts an average of one
week (absent development of serious symptoms), this implies a 26% decline in
work time. We assume the same number for Brazilian workers. Suppose that
leisure outside declines by the same amount. We then choose λa to match an in-
crease in time spent at home by 26% compared with a world without Covid-19.

For the preference discount factor, we assume that agents discount the future
at roughly 4% per year and set β = 0.961/52. The average real interest rate in
Brazil was approximately 4.9% from 2005.1 to 2020.5 and 3.5% from 2009.1 to
2020.5.21

Finally, we must set a value for b, the per-period value of being alive. Note that
a higher value for this parameter implies that an individual will engage in more
cautious behavior to avoid death. We thus pick b to generate an increase in time
at home as the one observed at the outbreak of the Covid-19 pandemic. The
issue is that most countries adopted lockdowns at the same time. We thus look
at Sweden, a country that did not implement severe restrictions. Brotherhood
et al. (2020) report an increase of 15.7% in time at home in Sweden in week 8
of the epidemic. As slums are not an important factor in Sweden, we use this
15.7% hike as the target of a version of our model without slums. This yields a

20The total hours of leisure outside are computed adding time spent commuting (Pereira and
Schwanen 2013) and activities related to socializing and cultural and sport activities. These
data come from the 2009 PNAD-C and the test pilot time-use survey.

21This is the monthly Over/Selic interest rate (Brazilian Central Bank rate) minus the inflation
rate measured by the IGP-DI (general price index from Vargas Foundation). We annualized the
monthly average real interest rate and inflation. These two variables can be downloaded from
www.ipeadata.gov.br.
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Table 2: Moments – model vs. data

Moment Model Data (ranges)
Share of individuals living in slums 22% 22%
Pop. density in slums/Pop. density in non-slum areas 4.5 4.5
Relative hourly labor income of individuals in slums 27.7% 27.7%
R0, Covid-19 2.5 1.6-4
% of infected in critical care 3.6 3.6
Weeks in critical care 3.5 3-6
% in critical care who die 20.24 10.6-31.8
Hours/day interacting while in ICU 3.8 7.6 (controlled)
Hours of work per week 34.2 34.2
Hours of outside activities per week 17.2 17.2
% of income on goods outside 27.28 27.28
% ↑ in time @ home – mild symptoms 26 26 (Influenza)
% ↑ in time @ home – outset of Covid-19 15.7 15.7
% of non-slum agents with priv. insurance 15.21 15.21

value of b = 8.575.

Panel C of Table 1 contains the calibrated preference parameters. Table 2 sum-
marizes some targeted moments of the model and their data counterpart. The
model matches the moments of Rio de Janeiro quite well.

5 Baseline Results

This section presents our baseline results. Our main focus is to understand the
role of slums in the pandemic. We first describe the path of our baseline econ-
omy when there is an outbreak of Covid-19 and there is no policy intervention.
Different policies are investigated in the next section.

Figure 4 shows the masses of individuals in different health states: healthy, in-
fected, with serious symptoms, recovered and deceased. The blue lines describe
the dynamics of individuals who live in slums while the orange lines represent
those who are not slum dwellers.22 The solid lines display our economic model

22In our calibration 22% of individuals live in slums. So any change in the figure is relative
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Figure 4: Aggregate variables, Baseline
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with equilibrium social distancing, and the dashed lines show, for comparison,
the counterfactual epidemiological model, in which behavior is unchanged rel-
ative to a world without the pandemic. The last graph in this figure displays
aggregate output. Along with this figure, Table 3 summarizes key moments of
the pandemic in our baseline model (first column) and in a typical epidemio-
logical model (second column), where behavior is kept constant by assumption.

The total duration of the unchecked epidemic is about a year (when herd immu-
nity becomes strong enough to essentially prevent further contagion) and the
peak in terms of seriously ill individuals is reached in about 11 weeks. As the
virus spreads, social distancing endogenously rises as evidenced by the hike
in hours at home by both groups. The number of infected people is thus re-
duced relative to the typical epidemiological model. This also translates in a
lower death toll in the benchmark. Notice that GDP at the peak is substantially
higher in the epidemiological model relative to the baseline. With the rising
risk of getting infected and possibly dying, agents cut time spent outside their
home and sharply reduce their working hours.

to this initial mass. Non-slum dwellers thus correspond to 78% of all individuals.

23



Table 3: Baseline results

Homog. Homog. Homog.
Benchmark Epidem. No slum densities wage rates age struct.

Wks to peak srsly ill (slum) 10.00 9.00 – 15.00 10.00 10.00
Wks to peak srsly ill (other) 11.00 10.00 14.00 14.00 11.00 11.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 5.09 – 0.66 1.19 2.18
Srsly ill p/ 1,000 @ peak (other) 0.77 6.02 0.65 0.68 0.74 0.75
Dead p/ 1,000 1year (slum) 10.04 13.78 – 6.32 8.87 13.49
Dead p/ 1,000 1year (other) 6.35 15.43 6.87 6.86 6.78 6.57
Dead p/ 1,000 1year (all) 7.16 15.06 6.87 6.74 7.25 8.11
Dead p/ 1,000 LR (slum) 10.11 13.78 – 6.53 9.07 13.68
Dead p/ 1,000 LR (other) 6.57 15.43 7.47 7.30 7.13 6.83
Dead p/ 1,000 LR (all) 7.35 15.06 7.47 7.13 7.56 8.34
Immune in LR (slum), % 74.33 91.60 – 51.78 70.11 72.37
Immune in LR (other), % 39.69 77.66 46.01 44.72 43.03 40.76
Immune in LR (all), % 47.36 80.75 46.01 46.28 49.03 47.76
GDP at peak - rel to BM 1.00 1.82 1.48 1.23 1.29 1.03
GDP 1year - rel to BM 1.00 1.14 1.17 1.00 1.17 0.99
Hrs @ home (slum) - peak 80.95 60.48 – 69.19 86.38 83.22
Hrs @ home (other) - peak 86.28 60.48 78.00 80.00 82.26 84.90
Hrs @ home (slum) - 6m 66.03 60.48 – 65.35 74.38 68.93
Hrs @ home (other) - 6m 69.40 60.48 72.42 72.82 70.79 70.12
Value - healthy (slum) 1968.10 1962.10 – 1976.60 4305.90 1960.20
Value - healthy (other) 4317.40 4283.10 4315.00 4315.30 4315.60 4316.50
Value - healthy (all) 3797.00 3769.00 4315.00 3797.20 4313.50 3794.50

Turn now to the role of slums in shaping health and economic dynamics. Ta-
ble 3 shows that the benchmark economy features a much higher death toll in
slums relative to other areas. The total death rate is 7.35 per 1,000 individu-
als, but in slums it is roughly 10 per 1,000 residents. Though slum dwellers
represent only 22% of the city’s population, they account for 30% of the over-
all deaths. This can be explained by the higher density in slums and therefore
more contagion, as well as more congestion of intensive care units—more on
these issues below—but also by differences in the individual choices of slum
and non-slum residents.

Figure 5 displays the time spent at home, at work and with leisure outside.
Social distancing (the increase in time at home relative to an epidemiological
model with no behavioral change) is lower for slum dwellers than for other in-
dividuals. Since they are poorer, slum residents decrease the number of hours

24



Figure 5: Choices of healthy agents
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Figure 6: Difference in protection behavior between slum and non-slum agents
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worked by less than non-slum individuals despite the fact they have a higher
chance of catching the virus. Figure 6 shows the difference in social distanc-
ing between the two groups at the outbreak of the pandemic. At the peak of
the disease, social distancing is about 10 percentage points lower for slum resi-
dents compared to others. This is qualitatively consistent with our event-study
analysis using mobile phones in Rio de Janeiro, displayed in Figure 2. Quan-
titatively, the unchecked epidemic generates a larger effect on the difference in
social distancing between slum and non-slum individuals.23 Recall that in our
model this is an unchecked epidemic, while in the data there are NPIs. We will
discuss the effects of NPIs in our model in the next section.

In order to further assess the role of slums in the pandemic, we run a counter-

23We should interpret the comparison of our theoretical social distancing measure with the
empirical index based on mobile phones with caution. The theoretical measure is an intensive
margin proxy for social distancing while the index constructed by Inloco is an extensive margin
measure. If we interpret in the model the home time as the fraction of households who stay at
home, then the model and the empirical counterpart would be equivalent.
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factual in which we set the measure of slum individuals to zero and keep all
other parameters at their baseline values. See the third column of Table 3. For
the non-slum residents (the only ones in this hypothetical world), the death rate
is now higher than the baseline: 7.47 per 1,000 in the counterfactual versus 7.35
in the benchmark. There are two reasons for this. First, in the baseline, close to
75% of slum residents are immune in the long run. That is, they contribute a
lot to reach herd immunity. In the benchmark, only 40% of non-slum individ-
uals are infected throughout the pandemic. Without slums, this number rises
to 46%. The second reason is that, with a safer environment in the non-slum
world, other individuals are less cautious. For instance, at the peak, they spend
about eight fewer hours at home. In the end, residents from other areas end up
with a lower welfare in this scenario without slums.

In our model environment, slum dwellers are different in four important char-
acteristics: they live in denser areas, their wage rate is lower, they are on aver-
age younger and it is harder for them to be admitted to an ICU. We now inves-
tigate the role of the first three factors in shaping the dynamics of the pandemic.
Easier access to ICU beds will be assessed in our policy section.

The fourth column of Table 3 contains statistics for a counterfactual in which
ξf = 0.22, which implies that the population density in slums is the same as
what is observed in other areas. All other parameters are kept at their baseline
values. The pandemic lasts longer now since the spread of the virus is reduced
and it takes more time to reach herd immunity. Relative to the baseline, the
death rate of slum dwellers is reduced from 10.11 to 6.53 per 1,000 individuals—
a 35% reduction. The death rate of other individuals rise from 6.57 to 7.30—a
rise of about 11%. That is, living in a neighborhood with higher density is
crucial to generate more deaths among slum residents. With less contagion due
to a lower population density in slums, individuals expose themselves more
by spending less time at home, offsetting in part the direct effect of a lower
population density in slums.

In the fifth column of Table 3, we increase the wage of slum dwellers and equate
it to the wage of other agents; i.e. wf = 1. All other parameters remain at
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their baseline values. Relative to the benchmark, since they are now richer,
individuals who live in slums spend more time at home. As these agents are
now more cautious, their death rate is reduced from 10.11 to 9.07, a reduction
of 10%. Given that a lower number of slum dwellers are infected now, the
economy can only reach herd immunity with a higher fraction of non-slum
residents being infected. This also translates into a higher death toll among
the latter group; an increase from 6.57 to 7.13 per 1,000. As non-slum residents
account for a larger fraction of the population, the overall death rate slightly
increases.

Recall that slum dwellers are on average younger and this translates in lower
hospitalization and death rates for members of this group. The last column in
Table 3 reports the results of a counterfactual in which we equate these rates
across the two groups. To be more precise, the thought experiment is that slum
residents now face the same (worse) recovery and death probabilities as indi-
viduals from other areas. Note that, even though the infection rates are similar
to the benchmark, death numbers are about 13% higher in this scenario. There-
fore, ignoring the fact that individuals living in slums are younger can lead
to misleading conclusions about the number of fatalities in these communities.
As life is now riskier in slums, this group becomes more cautious and spends
more time at home. With a lower supply of labor, GDP goes down even further
compared to the baseline.

In sum, in our unchecked pandemic calibrated to Rio de Janeiro, slums have
a non-trivial role in shaping the effects of Covid-19. First of all, the death rate
in slums is higher than in other areas. Slum dwellers’ share in total deaths is
much higher than their fraction in the overall population of the city. In ad-
dition, the very high population density in slums compared to other parts of
the city seems to be a key feature in explaining the high death rate observed
in slums. Interestingly, the presence of slums decreases significantly the time
to reach herd immunity and protects individuals who live in other neighbor-
hoods, generating important distributional effects. Policies that aim to curb the
Covid-19 pandemic in societies with a high fraction of their population living
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in slums must then take this fact into account. The next section explores the
effects of a variety of such policies.

6 Policy Experiments

In this section, we assess the impact of NPIs to control the health and economic
impact of the pandemic in our model economy. We evaluate three different
policies: the government requisition of private hospital intensive care units to
increase capacity in order to meet the demand for Covid-19 related treatment;
lockdown interventions to increase social distancing (shelter-at-home orders);
and financial aid policies to help people stay at home.

6.1 Public Hospital Beds

In Rio de Janeiro approximately 15% of the individuals have private health in-
surance and therefore access to private hospital beds. There are 510 and 3,079
beds in intensive care units in public and private hospitals, respectively (in a
city of about 6.3 million people).

In our calibration, we assume that slum dwellers have no health insurance and
approximately 19% of the individuals who do not live in slums have private in-
surance. We should expect that congestion of health services is therefore greater
in slum areas. In this policy intervention, we investigate the impact of a coun-
terfactual experiment in which the ICUs in private hospitals could be used to
treat all individuals in need for critical care.24

Table 4 shows that the total death rate is reduced by approximately 28% with
this policy. Although slum dwellers are the ones who benefit the most from
this policy, individuals who live in non-slum areas are also positively affected
since only a small fraction of them have private health insurance. Observe that
most of the agents decrease social distancing with this intervention as time at

24We abstract from any financial and political economy barrier to implement such a policy.
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Table 4: All hospital beds used by the public system

All beds
Benchmark public

Wks to peak srsly ill (slum) 10.00 10.00
Wks to peak srsly ill (other) 11.00 11.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 2.84
Srsly ill p/ 1,000 @ peak (other) 0.77 1.07
Dead p/ 1,000 1year (slum) 10.04 6.84
Dead p/ 1,000 1year (other) 6.35 4.82
Dead p/ 1,000 1year (all) 7.16 5.27
Dead p/ 1,000 LR (slum) 10.11 6.85
Dead p/ 1,000 LR (other) 6.57 4.86
Dead p/ 1,000 LR (all) 7.35 5.30
Immune in LR (slum), % 74.33 77.03
Immune in LR (other), % 39.69 42.89
Immune in LR (all), % 47.36 50.46
GDP at peak - rel to BM 1.00 1.02
GDP 1year - rel to BM 1.00 1.04
Hrs @ home (slum) - peak 80.95 80.26
Hrs @ home (other) - peak 86.28 85.01
Hrs @ home (slum) - 6m 66.03 62.61
Hrs @ home (other) - 6m 69.40 65.91
Value - healthy (slum) 1968.10 1974.90
Value - healthy (other) 4317.40 4325.80
Value - healthy (all) 3797.00 3805.10

home decreases. But the difference is not quantitatively so different from the
unchecked epidemic. The decrease in the death rate is mainly explained by the
direct effect of reducing congestion in access to public hospital care units rather
than by indirect effects of changing behavior. In the long run, more individuals
of both groups survive and become immune to the disease. Note also that this
policy increases GDP and the welfare for both groups.

6.2 Shelter-at-home Policies

We now investigate stay-at-home orders that can be implemented with the clos-
ing of non-essential businesses and schools, among other interventions. Results
for different lockdown restrictions are displayed in Table 5.
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Table 5: Shelter-at-home policies

6-week late
Immediate lockdown lockdown

25%, all 25%, slums 25%, non-slum 75%, all 25%, all
Benchmark 26 weeks 26 weeks 26 weeks 35 weeks 26 weeks

Wks to peak srsly ill (slum) 10.00 14.00 13.00 11.00 66.00 11.00
Wks to peak srsly ill (other) 11.00 16.00 14.00 12.00 67.00 12.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 1.07 1.11 1.86 1.88 1.10
Srsly ill p/ 1,000 @ peak (other) 0.77 0.48 0.71 0.57 0.77 0.48
Dead p/ 1,000 1year (slum) 10.04 9.21 9.13 10.00 0.00 8.68
Dead p/ 1,000 1year (other) 6.35 5.84 6.92 5.28 0.00 5.26
Dead p/ 1,000 1year (all) 7.16 6.58 7.41 6.33 0.00 6.02
Dead p/ 1,000 LR (slum) 10.11 9.51 9.29 10.19 10.10 9.29
Dead p/ 1,000 LR (other) 6.57 6.48 7.22 5.91 6.56 6.34
Dead p/ 1,000 LR (all) 7.35 7.15 7.68 6.86 7.35 7.00
Immune in LR (slum), % 74.33 73.58 70.96 76.68 74.36 73.29
Immune in LR (other), % 39.69 40.32 42.96 38.18 39.67 40.57
Immune in LR (all), % 47.36 47.69 49.16 46.71 47.35 47.82
GDP at peak - rel to BM 1.00 0.96 1.12 0.86 0.99 0.95
GDP 1year - rel to BM 1.00 0.87 0.98 0.89 0.47 0.87
Hrs @ home (slum) - peak 80.95 83.18 84.40 79.79 80.19 83.76
Hrs @ home (other) - peak 86.28 85.87 81.83 89.56 85.95 86.16
Hrs @ home (slum) - 6m 66.03 78.32 79.22 63.80 105.84 77.22
Hrs @ home (other) - 6m 69.40 79.79 70.83 78.39 105.84 78.36
Value - healthy (slum) 1968.10 1964.40 1964.20 1968.20 1863.20 1964.40
Value - healthy (other) 4317.40 4312.90 4315.30 4314.80 4213.00 4313.30
Value - healthy (all) 3797.00 3792.70 3794.50 3795.00 3692.50 3793.10

The first column in Table 5 reports moments related to the baseline unchecked
pandemic for comparison. The second column shows the same statistics for a
scenario in which there is a shelter-at-home policy that covers 26 weeks from
the start of the health crisis. During the duration of this policy, individuals
are required to increase their time at home by 25% relative to an environment
without the pandemic.25 As we can also see in Figure 7, the lockdown (solid
lines) flattens out the infected and critically-ill curves relative to the unchecked
pandemic (dashed lines). The total death rate decreases, mainly among slum
dwellers. There is less congestion of public beds with the lockdown, which is a
more binding issue for individuals living in slums. The total death rate among
slum dwellers decreases by approximately 6% while the overall death rate is

25We implement this by increasing λp(j, g) to the necessary value to induce agents to follow
the lockdown policy. Appendix D.3 reports the calibrated values for all counterfactuals in this
section.
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Figure 7: Aggregate variables (lockdown, 25% increase in time at home, all
groups, 26 weeks)
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reduced by 3%.

Notice that GDP during the first year of the pandemic decreases by 13% relative
to the no-policy baseline. The strong impact on the economy comes from a
reduction in the time spent at work. Figure 8 reports the choice of the agents
with a 26-week shelter-at-home policy (solid lines), as well as the benchmark
(dashed lines). Individuals stay longer at home with this lockdown policy than
in the baseline, reducing the peak of infection but delaying the duration of the
health crisis.

Notice that the time spent at home increases by about 20 percentage points rel-
ative to the baseline before the outset of the disease (left panel of Figure 8). This
is approximately the average percentage point change in the social distancing
index observed in the city of Rio de Janeiro (recall Figure 1 in Section 2). In
addition, the model implies a difference in social distancing between slum and
non-slum dwellers of around five percentage points (Figure 9). This is similar
to those reported in our event-study analysis in Figure 2 of Section 2.

In order to understand the role of slums in shaping the dynamics of the pan-
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Figure 8: Choices of healthy agents (lockdown, 25% increase in time at home,
all groups, 26 weeks)
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Figure 9: Difference in protection behavior between slum and non-slum agents
(lockdown, 25% increase in time at home, all groups, 26 weeks)
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demic under a lockdown, we also investigate the effects of targeted shelter-at-
home orders: a policy of increased social distancing applied only to individuals
living in slums (third column of Table 5) and one applied only to those who live
in other areas (fourth column of Table 5). Interestingly, the shelter-at-home pol-
icy in slums only increases the long-run death rate for non-slum individuals.
This is due to the fact that the fraction of non-slum dwellers necessary to reach
herd immunity would need to rise to compensate for the lower transmission
in slums. As the non-slum group is larger, this translates into a higher overall
death rate. This policy ends up lowering the welfare of both groups: slum resi-
dents are worse off because they are sheltered (even though deaths among this
group decrease) and the others suffer a worse health shock.

We also implement a more extreme lockdown policy (fifth column of Table 5)
in which we target a rise in 75% in the time spent at home relative to the base-
line. This policy lasts for 35 weeks or approximately 8 months. There are al-
most no deaths in the first year of the pandemic, which now lasts much longer.
Therefore, a stricter lockdown is an effective strategy to delay the peak and to
control temporarily the number of infected individuals and deaths. This might
be an important policy while waiting to build public infrastructure (e.g. hos-
pital beds) and/or define a future plan of action to control the virus, including
waiting for a possible treatment or vaccine. Without improvements in infras-
tructure, treatment or a vaccine, however, the total number of deaths with or
without an extreme lockdown are roughly the same. The reason is that, when
the extreme lockdown is relaxed, the numbers of infections and seriously ill
patients rise sharply leading to similar deaths compared to the case without
the policy. The extreme shelter-at-home policy clearly causes a deep economic
downturn.

Our shelter-at-home policies so far were implemented in the beginning of the
pandemic, when congestion of public goods is not necessarily binding. In the
last column of Table 5 we implement a lockdown policy similar to the one in
column two, but that is imposed in week 6 of the pandemic, instead of week
1. This later lockdown is more effective in saving lives. The total death rate is
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reduced by 5% instead of 3%, as in the lockdown that is implemented in week
1. The economic effects of both shelter-at-home policies are similar.

6.3 Financial Aid

We now turn to study the effects of an emergency measure designed to com-
pensate individuals for income losses due to a rise in social distancing. Table
6 contains such counterfactual experiments. Again for comparison, the first
column of this table contains the moments of the unchecked pandemic. The
second column displays the same statistics for the case in which the govern-
ment transfers 300 Brazilian Reais (R$) per month for all individuals in the first
26 weeks of the pandemic.26 This corresponds to 44% and 12% of the monthly
income of slum and non-slum dwellers, respectively.

Figure 10 shows that this policy flattens out the infection curves. This effect
is more pronounced in slums. The income effect is stronger for slum dwellers
than for those individuals who live in other areas (time at home at the peak is
essentially the same across the two groups). This implies that individuals liv-
ing in slums increase social distancing much more than in the benchmark. The
total death rate among individuals living in slums is reduced by 8% relative
to the baseline. Given that the threshold for herd immunity rises for non-slum
dwellers, this ends up increasing their total death rate by 5% during the pan-
demic. The overall death rate rises since the measure of individuals not living in
slums is large. Notice that this composition effect on death rates becomes more
pronounced when only slum dwellers receive the financial aid—third column
of Table 6—or when the financial aid is more generous (600 R$ for 26 weeks
instead of 300 R$)—fourth column of Table 6.

We now combine cash transfers lasting 26 weeks with stay-at-home orders that
cover the same period (we target a rise in 25% in the time spent at home relative
to the baseline by rising λp, see Appendix D.3). Such combination of policies

26This amount is approximately 60 US dollars in July, 2020.
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Table 6: Financial aid policies

Only financial aid Aid and 25% lockdown for all

300R$, all 300R$, slums 600R$, slums 300R$, all 300R$, slums 600R$, slums
Benchmark 26 weeks 26 weeks 26 weeks 26 weeks 26 weeks 26 weeks

Wks to peak srsly ill (slum) 10.00 15.00 14.00 32.00 32.00 32.00 32.00
Wks to peak srsly ill (other) 11.00 16.00 15.00 19.00 33.00 33.00 33.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 0.77 0.80 1.16 1.51 1.23 1.61
Srsly ill p/ 1,000 @ peak (other) 0.77 0.50 0.63 0.52 0.67 0.58 0.63
Dead p/ 1,000 1year (slum) 10.04 8.99 8.94 8.81 9.01 8.96 9.07
Dead p/ 1,000 1year (other) 6.35 6.40 6.94 6.89 5.49 5.98 5.88
Dead p/ 1,000 1year (all) 7.16 6.97 7.39 7.31 6.27 6.64 6.59
Dead p/ 1,000 LR (slum) 10.11 9.28 9.16 9.15 9.54 9.40 9.58
Dead p/ 1,000 LR (other) 6.57 6.91 7.30 7.36 6.48 6.72 6.70
Dead p/ 1,000 LR (all) 7.35 7.43 7.71 7.76 7.15 7.32 7.34
Immune in LR (slum), % 74.33 71.90 70.69 70.33 73.58 72.44 72.27
Immune in LR (other), % 39.69 41.95 43.41 43.96 40.35 41.39 41.55
Immune in LR (all), % 47.36 48.58 49.45 49.80 47.71 48.27 48.36
GDP at peak - rel to BM 1.00 1.16 1.24 1.30 1.10 1.20 1.12
GDP 1year - rel to BM 1.00 0.94 0.99 0.98 0.84 0.89 0.91
Hrs @ home (slum) - peak 80.95 78.61 80.46 77.55 78.85 77.99 80.36
Hrs @ home (other) - peak 86.28 77.74 77.99 80.32 83.88 82.00 84.49
Hrs @ home (slum) - 6m 66.03 73.96 74.77 80.16 82.24 83.64 87.05
Hrs @ home (other) - 6m 69.40 71.91 70.83 70.03 77.57 77.49 72.87
Value - healthy (slum) 1968.10 1985.60 1985.70 1998.80 1982.40 1982.60 1996.70
Value - healthy (other) 4317.40 4322.20 4315.70 4315.60 4320.70 4315.10 4316.70
Value - healthy (all) 3797.00 3804.60 3799.60 3802.40 3802.80 3798.50 3802.80

was implemented in several countries including Brazil.27 Start with a transfer
of 300 R$. The combined policy extends the duration of the pandemic; much
longer than when each of the policies is implemented separately. When the
policy is relaxed, infections rise rapidly and the overall death rate is only 3%
below the baseline. Notice, however, that the death rate among slum dwellers
is higher than in the case of only cash transfers or only the lockdown. Wel-
fare with transfers and lockdown is of course higher than in the case with only
lockdown. Targeting the transfer to slum dwellers exacerbates the differences
across groups, as it decreases infections and deaths in slums and increases these
statistics in other areas.

27In 2020, Brazilian informal workers received 600 R$ per month for three months during
the pandemic (“Emergency Assistance”) as a compensation for their confinement. There were
several issues related to the timing of the policy and to the bureaucracy to receive this cash
transfer.
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Figure 10: Aggregate variables (300R$ financial aid for 26 weeks, all groups)
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7 Conclusions

Over one billion people in the world live in slums. These are usually crowded
neighborhoods where social distancing is hard to be followed. Infectious dis-
eases can thus spread rapidly in such areas. This paper studies the role of slums
in shaping the health and economic dynamics of pandemics. Using rich data
gathered from millions of mobile phones in Brazil, we show that social distanc-
ing increased less in slums at the outset of the Covid-19 pandemic.

We build and calibrate a model where poor agents live in high-density slums
and richer individuals live in other areas. The former have a harder time ac-
cessing health care due to capacity constraints in public hospitals, but they are
on average younger. We fit our model to match key moments of Rio de Janeiro,
where 22% of individuals live in slums. Our simulations suggest that a dispro-
portionately high number of deaths occur in slums. In a counterfactual scenario
without slums, a higher fraction of residents from other areas catch the disease
as the burden to achieve herd immunity falls only on this group, illustrating
important distributional effects.
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Using the model to explore a variety of policy experiments highlights the im-
portance of taking this heterogeneity into account. Reallocating private ICUs
into a single pool helps all groups, decreasing the death toll significantly. Very
stringent shelter-at-home orders buy time but only delay deaths if no other pol-
icy is put in place. If lockdowns shelter a particular group, the other group
suffers worse health outcomes, and the welfare of both groups declines. Cash
transfers have a disproportional impact on slum residents and, as they can now
afford to cut their labor supply, infections fall more heavily on the other group.
In sum, policies can have contrasting effects across different groups in society.

Though our framework has considerable heterogeneity that allows for an array
of policy experiments, we have abstracted from potentially important margins.
For instance, individuals in our model are assigned a place of residence and
cannot move. Perhaps long-lasting pandemics may lead them to relocate and
health considerations may then affect the very structure of the city. Addition-
ally, temporary cuts in labor supply may have enduring effects on job prospects.
Being more likely to have informal jobs, slum dwellers may suffer more from
such displacements. These and other issues are left for future research.
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Online Appendix

A Data Sources and Definitions

In this appendix, we detail the data used in the empirical motivation (Section
2) and in the model calibration (Section 4).

Population Census. We use data from the 2010 Brazilian Population Census
carried out by IBGE (Brazilian Bureau of Statistics) to obtain information on
households and people living inside and outside slums. In the paper, we define
slums as housing units in “subnormal agglomeration”. According to the 2010
Population Census, a subnormal agglomeration satisfies three conditions: (i)
it consists of a group of at least 50 housing units, (ii) where land is occupied
illegally, and (iii) is urbanized in a disordered pattern and/or lacks basic public
services such as sewage or electricity.

The 2010 Population Census interviews all households in the country (“uni-
verse questionnaire”) and also executes more detailed interviews on a 5% ran-
dom sample of households (“sample questionnaire”). We use data from both
the universe and sample questionnaires, as detailed below.

From the universe questionnaire, we obtained information on the characteris-
tics of people and households at the census tract level (Setor censitário). Apart
from obtaining information on the total number of people and households in
each census sector, we are able to identify whether sectors are slums (“subnor-
mal agglomeration”) or not. Using this information, we constructed the follow-
ing variables for the cities of Rio de Janeiro and Sao Paulo:

• Total population

• Total number of households

• Number of people living in slum

• Number of households that are in slums
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• Average population density of each census tract, where the density is
number of inhabitants divided by the area of the tract in Km2

• Average population density of slums

• Average number of people in households

• Average number of people in households located in slums

From the sample questionnaire, we collected data on the average labor income
per capita as well as the average age of the population. However, notice that,
differently from the results of the universe of the Brazilian census, the sample
dataset does not identify whether the household lives in slums. Hence, we
constructed a proxy to identify whether each household lived in a slum. More
precisely, a household is considered to live in a slum if any of the following
conditions are met: It does not have a toilet; It has a lack of essential public
services and utilities (sewage, electricity, garbage collection, or piped water);
There are more than four people per bedroom. After classifying housing units
as slums, we tabulated the aforementioned income and demographic variables.

Covid RADAR - Jun/2020 - (https://www.covidradar.org.br): Covid Radar is a
collective of more than 40 companies and organizations that coordinate efforts
to build a reliable dataset on Covid-19 in Brazil. We use this website to collect
municipality (city) level data on the number of private and public intensive care
units (ICU) in Brazil.

ANS - Agência Nacional de Saúde Complementar - Mar/2020: From the ANS
(National Supplementary Health Agency)—which provides legal and admin-
istrative regulation of the private health insurance market—we obtained mu-
nicipality (city) level data on the number of people covered by private health
insurance in Brazil.

Expenditures: IBGE’s Brazilian Consumer Expenditure Survey (2008-2009) pro-
vides data on expenditure on goods. To calculate the fraction of income spent
on goods consumed outside the home, we use the following items of the con-
sumption basket: food away from home, public transportation, medical ser-
vices, and entertainment.
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Social distancing: Inloco(https://inloco.com.br), a Brazilian technology
company, collects anonymized location data from 60 million mobile phones in
Brazil. By tracking with a 3-meter precision the device’s location and move-
ments to different places (while ensuring user privacy), the company calculates
the social distancing index for cities (municipalities) in Brazil, including the
municipalities of Rio de Janeiro and Sao Paulo. For each municipality, the in-
dex calculates the percentage of devices that remained within a radius of 450
meters of the location identified as home. The index is computed daily and
ranges from zero to one.

The company also measures the social distancing index for nonoverlapping ar-
eas within the municipalities of Rio de Janeiro and Sao Paulo, called “hexagons”.
Each hexagon in Rio de Janeiro measures between 756,000 square meters and
760,000 square meters. In Sao Paulo, hexagons have between 738,000 square
meters and 745,000 square meters. There are 841 hexagons in Rio de Janeiro
and 1,301 hexagons in Sao Paulo. The methodology to calculate the index for
hexagons is similar: the percentage of devices in each hexagon that remained
within a radius of 450 meters of the location identified as home.

Census Tracts to Hexagons: The spatial unit of analysis in Section 2 (styl-
ized fact 2) is the hexagon provided by Inloco. To compute the number of
slum dwellers and the number of housing units in slums for each hexagon, we
needed then to match those hexagons’ boundaries to the boundaries of the cen-
sus tracts. Notice that are more census tracks than hexagons in each city—9,853
and 17,990 census tracts in Rio de Janeiro and Sao Paulo, respectively. When
aggregating census tracts into hexagons, we consider that the population and
households are uniformly distributed within each census tract. Hence, we cal-
culate the characteristic of the hexagon as the weighted average of the census
tracks’ characteristics that intersect the hexagon, weighted by the fraction of
the census track’s area that intersects the hexagon area. See Figures A1 and A2
for the location of census tracks and hexagons in Rio de Janeiro and Sao Paulo,
respectively. Figure A3 shows the location of the 510 hexagons with slums in
Rio de Janeiro, and the 598 with slums in Sao Paulo.
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Figure A1: Rio de Janeiro: Census Tracts and Hexagons
(a) 9,853 Census Tracts in Rio de Janeiro

(b) 842 Hexagons in Rio de Janeiro

Notes. The figure shows the census tracts and the hexagons for the city of Rio de Janeiro.

Covid-19 data at the neighborhood level: We obtained the neighborhood-level
number of Covid-19 cases and deaths from the following websites:

• http://www.data.rio/
• https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/
saude/COVID19_Relatorio_SItuacional_SMS_20200529.pdf

Covid-19 data at the hexagon level: Geo-referenced data on hospitalizations
and deaths (until May 18, 2020) caused by Covid-19 and other acute respiratory
diseases for the city of Sao Paulo is from the following website: https://

labcidadefau.carto.com/. We use the cross-sectional geo-referenced data
to create hexagon-level information on Covid-19 hospitalizations and deaths.
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Figure A2: São Paulo: Census Tracts and Hexagons
(a) 17,990 Census Tracts in São Paulo

(b) 1,301 Hexagons in São Paulo

Notes. The figure shows the census tracts and the hexagons for the city of Sao Paulo.
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Figure A3: Rio de Janeiro and São Paulo: Hexagons with slums (in red)
(a) Rio de Janeiro: Hexagons with slums (in red)

(b) São Paulo: : Hexagons with slums (in red)

Notes. The figures show the location of the hexagons (in red) with slums. There are 510
hexagons with slums in Rio de Janeiro, and the 598 with slums in Sao Paulo.
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B Additional Tables and Figures

Figure B4: Event-Study Analysis (results without weights): Rio de Janeiro
and Sao Paulo

(a) Rio de Janeiro
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(b) Sao Paulo
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Notes. The figure shows the results for coefficients estimated from Equation (1) without weight-
ing for population. Coefficients should be interpreted as a change in percentage points relative
to the base period, which corresponds to the day before each NPI. The “treated group” is com-
posed of hexagons with at least one housing unit in a slum. We use 841 hexagons in Rio and
1,301 hexagons in Sao Paulo. Data are provided at the hexagon-day level. The dependent vari-
able: social distancing index for hexagon h on day t. Standard Errors clustered at hexagon level.
Confidence intervals: 95%.
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Figure B5: Event-Study Analysis (share of slums as the treatment dummy):
Rio de Janeiro and Sao Paulo

(a) Rio de Janeiro
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(b) Sao Paulo
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Notes. The figure shows the results for coefficients estimated from Equation (1). The treatment is
the share of slums in each hexagon. Coefficients should be interpreted as a change in percentage
points relative to the base period, which corresponds to the day before each NPI. Analysis at
the hexagon-day level (841 hexagons in Rio and 1,301 hexagons in Sao Paulo). The dependent
variable: social distancing index for hexagon h on day t. Standard Errors clustered at hexagon
level. Confidence intervals: 95%.
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Table B1: Difference-In-Differences: Average Impact of NPIs on Social Distanc-
ing

Dependent variable: social distancing index

(i) (ii) (iii)

Post × Slum Dummy -0.0386*** -0.0429*** -0.0429***
(0.0050) (0.0021) (0.0021)

Post × Slum Dummy × Rio Dummy 0.0043
(0.0054)

Control group mean 0.2989 0.2820 0.2903

Hexagon FE Yes Yes Yes
Time FE Yes Yes Yes
Time FE × Rio Dummy - - Yes
Observations 97,684 151,504 249,188
Number of Hexagons 841 1,301 2,142
City Rio de Janeiro Sao Paulo Rio de Janeiro

& Sao Paulo

Notes. Each column displays the results from a separate regression. This table presents
results from the estimation of the following difference-in-difference specification: Yht =

β Post × Slum Dummy + ωh + δt + εht, where Yht is the social distancing index for hexagon h

on day t, ωh is the hexagon fixed effect, and δt is the time fixed effects. The unit of observation is
a hexagon-day. The “treated group” is composed of hexagons with slums, while the comparison
group is composed of hexagons without slums. The treated dummy “Post× Slum Dummy” equals
one for hexagons with at least one housing unit in a slum for the days after implementation of the
first NPI, and is zero otherwise. There are 841 hexagons in Rio de Janeiro and 1,301 hexagons in Sao
Paulo. Robust standard errors (in parentheses) are clustered at the hexagon level. Observations are
weighted by the hexagon population in 2010. The value for the control group mean is for the day
before the implementation of the first NPI for each city. The regressions are for 120 days (from Feb
1 to May 30, 2020). Coefficients should be interpreted as a change in percentage points. Column (I)
shows the results for the hexagons of Rio de Janeiro, while column (II) presents the results for Sao
Paulo. Column (III) shows the results of a triple difference specification with all the hexagons of
Rio de Janeiro and Sao Paulo (2,142 in total), where Rio Dummy equals one if the hexagon belongs
to the city of Rio de Janeiro. The “Post × Slum Dummy × Rio Dummy” equals one for hexagons
in Rio de Janeiro with at least one housing unit in a slum for the days after the implementation of
the first NPI.
*** p<0.01, ** p<0.05, * p<0.1
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Table B2: Cross-Section Analysis: Correlation between slums and hospitaliza-
tions/deaths

Dependent variable: Covid-19 Acute Respiratory Disease

in logs Hospitalization Death Hospitalization Death

(i) (ii) (iii) (iv)

Slum Dummy 0.1115** 0.1010*** 0.3588*** 0.0731**
(0.0463) (0.0378) (0.0435) (0.0339)

Observations 1,301 1,301 1,301 1,301
Number of Hexagons 1,301 1,301 1,301 1,301
City Sao Paulo Sao Paulo Sao Paulo Sao Paulo

Notes. Each column displays the results from a separate cross-section regression. This table
presents results from the estimation of the following specification: Yh = α+ γIh + εh, where Yh is
the outcome variable (hospitalizations and deaths) for each hexagon h and the “Slum Dummy”
Ih equals one for hexagons with slums and zero otherwise. The unit of observation is a hexagon.
There are 1,301 hexagons in Sao Paulo. Robust standard errors (in parentheses). The dependent
variables in the regressions are the total (accumulated) number of hospitalizations and the total
number of deaths (from Jan 2020) until May 18, 2020. See Appendix A for more details on the
data.
*** p<0.01, ** p<0.05, * p<0.1

C Laws of Motion

In the main body (9) describes the overall laws of motion, and (10) describes the
sub-part that determines the transitions for the healthy agents. The following
contains the transitions for all other types.

To account for infected people, one counts those who started last period healthy
and get infected this period, but also those who started last period infected who
neither develop severe symptoms nor recover:

Mt+1(i, g) = Mt(h, g)π(nt(h, g) + `t(h, g),Πt(g)) (16)

+Mt(i, g)(1− φ(0, g))(1− α(g))

People with severe symptoms comprise those who entered last period infected
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and do not recover but instead develop more severe symptoms, as well as
severely symptomatic individuals from the previous period who neither die
nor recover:

Mt+1(s, g) = Mt(i, g)(1− φ(0, g))α(g) (17)

+Mt(s, g)(1− δt(g))(1− φ(1, g))

Recovered and therefore resistant individuals comprise those who were in-
fected and recover, those with severe symptoms who do not die but recover,
and resistant individuals from the previous period:

Mt+1(r, g) = Mt(i, a)φ(0, g) +Mt(s, g)φ(1, g) +Mt(r, g) (18)

The right hand sides of equations (16) to (18) gives the map Tj for states j =

i, s, r.

For accounting purposes, the measure of deceased agents as a result of Covid-
19 is given by new Covid deaths and those who died of it in previous periods:

Mt+1(deceased, g) = Mt(deceased, g) + (1− φ(1, g))δt(g)Mt(s, g),

while the number of newly infected people is given by healthy agents who get
infected

Nt+1(i, g) = Mt(h, g)π(nt(h, g) + `t(h, g),Πt(g)).

D Details on Calibration

D.1 Basic Reproduction Number - R0

The probability that an infected agent leaves such state is: φ(0) + (1 − φ(0))α.
This is the probability of recovery and the probability that the agent switches
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to the serious symptoms case. Hence, the expected amount of time one stays in
state i is:

Ti =
1

φ(0) + (1− φ(0))α
.

The probability that an agent with serious symptoms leaves such state is: φ(1)+

(1− φ(1))δ. This is the probability of recovery and the death-because-of-Covid
probability. Hence, the expected amount of time one stays in state s is:

Ts =
1

φ(1) + (1− φ(1))δ
.

Now, the probability that one moves from the i state to the s state is given by:

Ps =
(1− φ(0))α

1− (1− φ(0))(1− α)
.

Note that the expressions above should be functions of one’s group g, but we
have suppressed this for notational convenience.

Let ñ(g) denote the amount of time an infected person of group g spends out-
side. Let ` be the interaction time for people with serious symptoms. Finally,
let n̄ be the average (across groups) amount of time people spend outside. At
the outset of the disease, a measure 1 of the population is healthy.

Then, R0(g) (i.e. for an infected person of group g) is given by:

R0(g) =
[
ñ(g)Ti(g) + `Ps(g)Ts(g)

]
n̄Π0.

This is the average number of people someone infects (for a person of a given
group). The economy’s R0 will be the weighted average across groups:

R0 =
∑
a

ω(g)R0(g),

where ω(g) is the weight of group g in the population.
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D.2 Computing Weekly Rates

Consider an agent that is infected with Covid-19. He may recover with proba-
bility φ(0) or develop serious symptoms with probability α. These are functions
of g also, but we supress this dependence for notational convenience. The fol-
lowing table gives what happens to a measure 1 of agents that are infected right
now over the course of the next few weeks.

Week Frac recovered Frac still infected Frac w/ symptoms

1 φ(0) (1− φ(0))(1− α) (1− φ(0))α

2 (1− φ(0))(1− α)φ(0) [(1− φ(0))(1− α)]2 (1− φ(0))(1− α)(1− φ(0))α

3 [(1− φ(0))(1− α)]2 φ(0) [(1− φ(0))(1− α)]3 [(1− φ(0))(1− α)]2 (1− φ(0))α

4 ... ... ...

Thus, the fraction of people that will develop symptoms Fs is given by

Fs = (1− φ(0))α + (1− φ(0))(1− α)(1− φ(0))α + [(1− φ(0))(1− α)]2 (1− φ(0))α + ...

= (1− φ(0))α
[
1 + (1− φ(0))(1− α) + [(1− φ(0))(1− α)]2 + ...

]
= (1− φ(0))α

1

1− (1− φ(0))(1− α)
.

Solving out for α gives

α =
Bφ(0)

1−B(1− φ(0))
,

where B = Fs/(1−φ(0)). With φ(0) given by the average time for recovery, one
can use the formula above to get α.

We can do similarly for agents with symptoms to figure out at what rate they
die. Here is the table:
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Week Frac recovered Frac still w symptoms Frac dead

1 φ(1) (1− φ(1))(1− δ) (1− φ(1))δ

2 (1− φ(1))(1− δ)φ(1) [(1− φ(1))(1− δ)]2 (1− φ(1))(1− δ)(1− φ(1))δ

3 [(1− φ(1))(1− δ)]2 φ(1) [(1− φ(1))(1− δ)]3 [(1− φ(1))(1− δ)]2 (1− φ(1))δ

4 ... ... ...

Using the same steps above and denoting the fraction that die by Fd, we get:

δ =
Aφ(1)

1− A(1− φ(1))
,

where A = Fd/(1− φ(1)).

D.3 Implementing Lockdowns in the Model

In Section 6.2, we implement a variety of shelter-at-home policies. We achieve
the desired lockdown by setting the policy parameter λ(j, g) to the value nec-
essary to induce the agent to comply with the policy. The next table reports the
calibrated values of λ(j, g) for each policy.

Lockdown λp

intensity Non-infected Infected

25% 1.88 0
50% 6.45 4.46
75% 33.4 31.45
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