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Deep learning provides powerful methods to impute structured information from
large-scale, unstructured text and image datasets. For example, economists
might wish to detect the presence of economic activity in satellite images, or
to measure the topics or entities mentioned in social media, the congressional
record, or firm filings. This review introduces deep neural networks, covering
methods such as classifiers, regression models, generative AI, and embedding
models. Applications include classification, document digitization, record link-
age, and methods for data exploration in massive scale text and image corpora.
When suitable methods are used, deep learning models can be cheap to tune and
can scale affordably to problems involving millions or billions of data points..
The review is accompanied by a regularly updated companion website, EconDL,
with user-friendly demo notebooks, software resources, and a knowledge base
that provides technical details and additional applications.

I. Introduction

Deep neural networks have led to many re-
cent scientific achievements – ranging from
landing a rover on rugged Martian terrain to
creating capable chatbots to transforming the
diagnosis of disease. Deep neural networks
typically map unstructured data - such as text,
document image scans, satellite and other im-
agery, videos, and audio - to a continuous vec-
tor space. In other words, they map com-
plex and diverse types of data into a for-
mat that is easier to process and understand.
In the above examples, the resulting vectors
are used to compute the instructions to steer
the spacecraft, autoregressively predict what
word comes next given a prompt, or identify
whether an image contains a tumor. Anal-
ogously, an economist might use neural net-
works to detect the presence of informal ven-
dors in street view images, or to measure the
topics or people mentioned in firm filings or
government documents.

* Department of Economics, Harvard University and
NBER, melissadell@fas.harvard.edu. I would like to thank
four anonymous referees, the editor, and Jake Carlson for
their helpful comments and suggestions. Yiyang Chen pro-
vided excellent research assistance.

At its core, deep learning is an approach
for learning representations of data from em-
pirical examples (LeCun, Bengio and Hinton,
2015). These representations simplify high di-
mensional unstructured data into continuous
vectors. Deep neural networks learn represen-
tations at multiple layers of abstraction, com-
bining non-linear neural network modules that
each transform the representation in the previ-
ous layer of the neural network into a slightly
more abstract representation, using learned
weights (the term “deep” signifies these many
layers of transformation). These weights are
estimated by minimizing a loss function that
compares model predictions for some task to
ground truth examples.

Why would one use a neural network to
transform the raw data into these vector rep-
resentations, versus just working directly with
raw texts or images? First, deep neural net-
works don’t just learn from the problem at
hand. Rather, they incorporate relevant in-
formation in their parameters from exposure
to massive-scale data. During pre-training, a
modern language model, or vision model, will
have been exposed to many millions of texts
or images, learning the basic structures of lan-
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guage or vision. Exposure to vast amounts of
data is essential to strong performance when
processing unstructured data, because human
language and vision are remarkably complex.
This principle is called transfer learning and is
core to the success of deep neural methods.

Moreover, raw pixels or words lack context,
which is necessary for interpreting their mean-
ing. Deep neural networks provide a power-
ful method for computing contextualized rep-
resentations. They map terms or pixels to vec-
tors that depend on other nearby terms or pix-
els, with parameters learned mostly through
massive-scale pre-training.

Finally, raw texts and images are computa-
tionally unwieldy. In contrast, there are ex-
tremely optimized tools for continuous vec-
tor computations. For example, Silcock et al.
(2023) make 1014 exact vector similarity cal-
culations on a single mid-range GPU in 3
hours. This means that data can be analyzed
at an unprecedented scale. Theories are tested
with data, and while more data won’t solve
challenges of causality, in general, it will pro-
vide economists with more fine-grained infor-
mation for testing various hypotheses.

This review aims to bridge the gap be-
tween state-of-the-art deep learning research
and economic applications. It focuses on im-
puting low-dimensional structured data from
unstructured texts or images, in contexts where
the ground truth is uncontroversial but extrac-
tion needs to be automated due to the massive
scale of the problem. This structured data is
then used for causal or descriptive analyses,
whether as an outcome, endogenous variable,
instrument, or control. Tasks that economists
already perform by hand or with traditional
methods (e.g., record linkage, text classifica-
tion, document scan digitization) can be more
accurately automated at scale, and deep learn-
ing also facilitates the extraction of novel data.
Like a prior review by Gentzkow, Kelly and
Taddy (2019), this review emphasizes text as
data, but with methods developed since the
publication of that article.

Many of the applications in this review fall

under the broad umbrella of classification:
mapping high-dimensional unstructured data
into discrete classes. The classes could iden-
tify types of objects present in a satellite image
or numbers and words in a document image
scan. Alternatively, classes could identify the
topics of texts, the underlying source they were
reproduced from, or unique individuals or lo-
cations referenced in them. A language model
can be used to encode the raw text into lower-
dimensional dense vector representations, one
for the full text and one for each individual
term (where “dense” means that the vector has
a non-zero value in every position). The re-
searcher can use these vector representations
to predict whether the text is about a given
topic, which locations are referenced, etc., by
adding a classifier layer to the language model.
Image classification works analogously. Gen-
erative AI models can also be prompted to im-
pute these classifications. Alternatively, one
can work directly with the dense vector rep-
resentations, which are referred to as embed-
dings.

Figure 1 provides a flow chart for approach-
ing classification. The first question to ask is:
“Are the classes enumerated ex ante?” Some-
times, classes are not known, or the researcher
may wish to add classes when applying the
model to new settings without re-training it.
A classifier computes a score for each class
using the last layer of the language or vision
model. Therefore, it can only be estimated
when the classes are specified and seen in
training. If classes are not specified, the re-
searcher will need to work directly with the
embeddings. If there are many classes, e.g., as
with record linkage, where each unique entity
can be thought of as a class, the researcher will
again need to work with embeddings due to
computational constraints in estimating a clas-
sifier.

When classes are specified ex ante and mod-
est in number, either a classifier or generative
AI may be well suited to the problem. If appli-
cations diverge from the data used to pre-train
the neural network—common when working
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FIGURE 1. FLOWCHART FOR APPROACHING CLASSIFICATION.

with historical data, document scans, or cer-
tain specialized settings—there is significant
domain shift from the pre-training corpus, and
it may be necessary to tune a customized clas-
sifier to achieve strong performance. The nu-
ance of the class definitions is also important.
For straightforward tasks, framing classifica-
tion as text generation using an off-the-shelf
generative AI model like OpenAI’s GPT may
work well. For more nuanced tasks, a custom-
trained classifier can better capture that nu-
ance by being exposed to fine-grained exam-
ples. If in doubt, a researcher can try an off-
the-shelf method and switch to a customized
classifier if performance is unsatisfactory. This
review shows that while custom-trained classi-
fiers most often outperform GPT on text clas-
sification tasks, generative AI and custom clas-
sifiers both perform well on straightforward
tasks. The review also considers the costs of
these approaches.

Table 1 summarizes this review’s applica-
tions. Most can be framed as classification
problems. The article also reviews regression,
where a neural network is used to impute con-
tinuous values from text or images. It is im-
portant to note that the term “regression” is
used somewhat differently in machine learn-
ing than it is in economics, which can generate
confusion. In machine learning, “regression”
refers to the prediction of a continuous num-

TABLE 1—APPLICATIONS

Problem Modality Application(s) Section

Classifiers and GenAI
Sequence Text Classify news VII.3

classification article topics

Token Text Tag people, VII.4
classification locations, orgs

Paired text Text Text b VII.5
classification entails a?

Embedding Models
Link Text, Link VIII.2

structured Images firms, products,
data locations

Link Text Link people VIII.3
unstructured mentions to
data Wikipedia

Classification Text Track content VIII.4
w/ unknown Images dissemination;
categories data exploration

Retrieval Images Optical character VIII.5
recognition

Regression
Object Images Detect document IX

detection layouts
Note: Applications covered in this review.

ber, whereas “classification” refers to the pre-
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diction of discrete outcomes. Regression en-
compasses any type of model used to predict
continuous outcomes; in this review, we con-
sider regression using deep neural networks.

In the pre-deep learning era, problems in
different domains were approached in very dif-
ferent ways, using rules heavily engineered to
the specific features of a given language or a
particular type of image, etc.; whereas deep
learning has a remarkable capacity to general-
ize. Natural language processing (NLP), com-
puter vision, and audio processing all use the
same state-of-the-art neural network architec-
ture, for instance. This generalizability is ap-
parent in the diverse applications discussed in
this review.

A variety of neural network applications are
beyond the scope of this review. It does not
cover how language models can be used more
generally to enhance economists’ productivity,
as discussed by Korinek (2023). It also does
not cover machine learning methods outside of
deep learning, such as those applied to struc-
tured data (which typically use shallower net-
works), as summarized in a review by Athey
and Imbens (2019). Additionally, it does
not examine using deep neural networks to
compute approximate solutions to combinato-
rial optimization and high-dimensional DSGE
problems. Approximating these solutions re-
quires learning a neural network to map the
original problem to a continuous vector space
that preserves the essential properties of the
problem. This is useful because computing
an approximate solution in this space is dra-
matically faster than with traditional methods,
allowing much larger problems to be approx-
imated. There are many parallels with the
methods covered in this review, but the appli-
cations are different enough that they necessi-
tate their own treatment. Readers may wish
to consult courses by Fernández-Villaverde
(2024) and Vitercik (2023). Finally, a small
literature directly uses deep neural networks in
a causal framework. For instance, Lynn, Kum-
merfeld and Mihalcea (2020) use classifiers
and experiments to examine how variations

in texts causally influence decision-making.
While there is a role for this when experi-
mentally manipulating text, often a researcher
would like to extract low-dimensional repre-
sentations from high-dimensional unstructured
data (e.g., a text’s topic, objects in a satel-
lite image, numbers in a table scan, which
textual records refer to the same firm) and
use these—not the unstructured data—in the
causal estimating equation. Hence, the focus
here is on predicting these low-dimensional
characteristics. The review does not attempt
to summarize how these predictions have been
used in economic studies, as this literature is
new and rapidly evolving.

The reader may be wondering how quickly
this review will become outdated. It is helpful
to consider the popular metaphor that neural
networks are like Legos: different neural net-
work components can be configured in various
ways to achieve different ends, or to achieve a
more state-of-the-art version of the same end.
This review focuses on frameworks where it is
straightforward to swap in new neural network
components as the literature advances, e.g., re-
placing an older convolutional neural network
with a vision transformer (Dosovitskiy et al.,
2020), or updating a BERT language model
backbone (Devlin et al., 2019) with the most
recent language model. Technical and imple-
mentation details—those most likely to change
as the literature advances—are provided on
the accompanying EconDL website: https:

//econdl.github.io/. It provides a knowl-
edge base organized into core topics, as well as
links to open-source packages geared towards
economists and pipelines that construct large-
scale datasets with deep learning. Interested
readers will find lecture notes and links to blog
posts, textbook treatments, open courseware,
and original papers. EconDL also links to
demo notebooks for many of the applications
in this review. The website will be updated on
a continual basis for as long as the transformer-
based methods covered in this review remain
state-of-the-art, and some of the packages ex-
plicitly support swapping in new neural net-

https://econdl.github.io/
https://econdl.github.io/


VOL. VOLUME NO. ISSUE DEEP LEARNING FOR ECONOMISTS 5

works as the literature advances.
This article is organized as follows: Sec-

tion II provides an overview of deep learning,
and Section III introduces foundational archi-
tectures. Section IV discusses data require-
ments of deep learning, Section V considers
bias and uncertainty quantification, and Sec-
tion VI addresses reusability and reproducibil-
ity. Next we turn to applications. Section VII
introduces classification problems where the
classes are defined ex ante and there are not
too many classes, comparing classifiers and
generative AI. Next, Section VIII delves into
embedding models, which are useful when the
number of classes is large or the classes are
not specified ex ante. Section IX considers re-
gression problems. There are other ways to
approach the applications covered in this re-
view. Section X highlights why the methods
emphasized are most likely to be suitable to
the constraints faced by academic researchers.
Section XI concludes.

II. An Overview of Deep Learning

1. What is deep learning?

Deep neural networks learn representations
of raw data that extract information useful
for specific tasks. Deep learning uses neu-
ral networks with many layers to map raw
data to these representations, simplifying high-
dimensional unstructured data into continuous
vectors.

To represent data meaningfully for a given
task, nodes (the numbers in a vector rep-
resentation) in one layer of the neural net-
work are transformed into nodes in the next
by combining them with a non-linear func-
tion whose weights are learned parameters.
These parameters—numbering millions to bil-
lions—are estimated by minimizing a cost
function that compares model predictions on
some task (e.g., predicting masked terms in
text) to ground truth examples. For those unfa-
miliar with neural networks, I recommend the
introductory videos by Sanderson (2017).

The development of novel architectures and
methods has made it feasible to optimize neu-

ral networks with millions to billions of pa-
rameters. These advances, while largely be-
yond the scope of this relatively broad review,
are discussed in the EconDL knowledge base.
In particular, many pioneering contributions in
estimating deep networks were made in the lit-
erature on convolutional neural networks and
are discussed in that post in the knowledge
base.

Training a deep neural network from scratch
requires a massive amount of data, and a cou-
ple of large-scale datasets are mainstays of
the literature: ImageNet—a 14 million im-
age dataset for image classification and related
tasks (Deng et al., 2009)—and crawl corpora
(e.g., Cleaned Colossal Common Crawl (Raf-
fel et al., 2019; Dodge et al., 2021))—mas-
sive public domain text datasets that essen-
tially take a snapshot of the internet. Commer-
cial models behind an API may also license
proprietary training data. Training a deep neu-
ral model from scratch can require up to mil-
lions of dollars in compute, but fortunately,
this is rarely necessary.

Deep learning has transformed many fields
because of the power of transfer learning:
deep networks trained in one domain can be
adapted to many other domains with far fewer
empirical training examples (often a few hun-
dred to a few thousand) than would be required
to train a model from scratch. For example, a
researcher who needed to train a topic classi-
fier could go to Hugging Face—the central hub
for NLP (Section IV)—and download a pre-
trained state-of-the-art language model made
publicly available by entities such as Google,
Meta, and Microsoft. The language model was
trained on a colossal corpus to predict tokens
(words or sub-words) randomly masked from
text. From this training, it learned to produce
meaningful contextualized vector representa-
tions of texts. The researcher could add a clas-
sifier layer to the pre-trained language model
and fine-tune the resulting neural network on
their classification task using a relatively mod-
est amount of labeled data. Most of the mil-
lions of model parameters would remain un-
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FIGURE 2. CLASSIFYING TEXT.

changed, as the model’s basic understanding
of language doesn’t need updating, but the pa-
rameters that are of greatest relevance to the
task at hand will update to improve model pre-
dictions (Merchant et al., 2020).

One of the striking findings that has
emerged from deep learning in recent years
is that returns from increasing model size
can continue to accrue even with very large
models (e.g., billions of parameters) (Raffel
et al., 2020). Human vision and language
are complex, and a rich expressive model is
needed to capture that complexity. For ex-
ample, suppose we wish to perform the sim-
ple task of classifying which of ten objects
(a horse, car, etc) is contained in an image.
The inputs to a classifier are the RGB values
of each pixel x1,1,x2,1...xn,n. Suppose we esti-
mate a linear classifier using these inputs. The

score for each class j = 1...10 is β j,1,1x1,1 +
β j,1,2x1,2 · · ·+β j,n,nxn,n + γ j, where the β j and
γ j are estimated parameters. The classifier pre-
dicts assignment to the class with the highest
score. The weight parameters for a class will
be larger for pixels where the object in that
class tends to be located. This is inherently
brittle, because for each class there is only one
parameter per pixel, but the horse could vary in
its pose, its size, its position in the image, its
color or build, etc. In the plot of the βhorse, one
may see a horse standing in the middle of the
image with two heads facing in either direc-
tion, as the linear classifier struggles to assign
high values to pixels where horses are empiri-
cally likely to be located. A large neural net-
work effectively allows for many such “filters”
in predicting whether a horse is in the image.

Alternatively, suppose we would like to an-
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alyze whether statements (e.g., in survey data)
have a positive, negative, or neutral sentiment.
A traditional approach, commonly used in
the economics literature, is the bag-of-words
method. The researcher looks up the sentiment
of each word in a lookup table and aggregates
these together to measure the sentiment of the
sentence (Figure 2).

It is straightforward to see the limitations
of this approach. Consider the following sen-
tences: ’I love this article,’ ’I don’t love this
article,’ ’I don’t hate this article,’ ’There’s
nothing that I don’t love about this arti-
cle.’ One cannot capture these different
sentiments—even in these very simple sen-
tences—by adding up independent representa-
tions of each word. Instead, we need to model
nonlinear combinations of words, and neural
networks are the state-of-the-art tool for ap-
proximating complicated nonlinear functions.

When processing text with a modern lan-
guage model (bottom panel of Figure 2), a to-
kenizer first maps each word in the input to
a number assigned by a lookup dictionary (if
the word isn’t in the dictionary, it gets split
into subwords that are). These numbers get
converted into vectors using learned parame-
ters and are then passed through the neural net-
work, which transforms them incrementally at
each layer into semantically rich representa-
tions of the input tokens. Vision models are
broadly analogous, taking pixels or patches of
images as inputs.

The main alternative to neural networks is
to use human-engineered features. In other
words, the researcher pre-specifies rules for
processing raw information. For example, ta-
ble digitization could be automated by writing
rules to detect the connected white space that
separates rows and columns. With deep learn-
ing, the model is instead shown annotated ex-
amples of table layouts. The deep learning rev-
olution has illustrated over and over—across
many different tasks—that learning from em-
pirical examples greatly outperforms human-
engineered feature extraction in processing un-
structured data. Some of this evidence is dis-

cussed in the EconDL knowledge base.

Deep learning is likely to outperform fea-
ture engineering in many economic applica-
tions as well. The information that economists
would like to process is frequently complex
and noisy. For example, noise is introduced
into document scans through aging, scan-
ning, and historical printing techniques; al-
ternatively, text data may contain OCR errors
or typos. Human language is complex, with
many different ways to express the same senti-
ment and words that can change meaning sig-
nificantly depending on the context. Noise
and complexity create exceptions to human-
engineered rules, which must also be hard-
coded, and likewise there are exceptions to the
exceptions. What initially seems like a sim-
ple task can quickly become convoluted as the
researcher tries to hard-code these exceptions.
Even if the results are satisfactory, the human-
engineered system is likely to be heavily tai-
lored to the case at hand and will not translate
well to other data with different types of com-
plexity and noise.

Another potential advantage of deep learn-
ing is that recipes for training and implement-
ing neural networks are standard and repro-
ducible, whereas significant discretion is in-
herent in human-engineered feature extraction.
Even leaving aside researcher degrees of free-
dom, significant domain knowledge is required
to engineer rules. For example, in statisti-
cal machine translation, large numbers of re-
searchers worked over decades to engineer
complicated statistical rules for machine trans-
lation. These systems were outperformed by a
neural network that a few researchers devel-
oped over a few months. Subsequent advances
in neural translation led to the Transformer ar-
chitecture (Vaswani et al., 2017), which has
since revolutionized natural language process-
ing, computer vision, audio, and other do-
mains.
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III. Foundational Deep Learning
Architectures

This section provides a brief introduction
to neural network architectures. For readers
who are not familiar, I recommend consulting
the EconDL knowledge base and the resources
available there for a more detailed treatment.

1. The Basics of Neural Networks

A neural network consists of layers of in-
terconnected nodes, which are called neurons.
Each neuron holds a value. The value of a
neuron is computed by combining values from
neurons in the previous layer using an activa-
tion function and learned weights. These many
layers transform the input (e.g., tokenized text)
into vectors that are useful for performing a de-
sired task.

An example activation function is rectified
linear unit (ReLU): f (x) = max(0,x), where

(1) x = w1 · i1 +w2 · i2 + . . .+wn · in +b

w1,w2, . . . ,wn and b are the learned weights
and bias terms and i1, i2, . . . , in are the input
values to the neuron from the previous layer in
the network. When we feed data into a neural
network, the input values are transformed by
the activation functions at each layer. Nodes
in the final layer are the output.

Activation functions are an important com-
ponent of neural networks, because they in-
troduce non-linearity, enabling the network to
capture non-linear relationships in the data.
The Convolutional Neural Networks post in
the knowledge base provides further introduc-
tion to activation functions.

To optimize the neural network, the out-
put is compared to ground truth labels using
a loss function. What these labels measure de-
pends on the objective: e.g., predicting masked
terms for a language model or predicting im-
age classes for an image model. As with any
optimization problem, we need to know the
gradient of the loss with respect to each weight

to minimize the function. For each layer start-
ing from the output layer and moving back-
ward through the network to the input layer,
we compute the gradient of the loss with re-
spect to the weights in that layer. This requires
using the chain rule. The chain rule allows
us to compute the derivative of the loss with
respect to any weight in the network by mul-
tiplying together derivatives computed layer
by layer. This is known as backpropagation.
Weights are adjusted using a gradient descent
algorithm.

Readers who are not familiar with backprop-
agation are encouraged to consult Sanderson
(2017) for a high-production-value, graphical
introduction. Readers wishing to gain a deeper
understanding may enjoy Karpathy (2022), an
advanced backpropagation tutorial. Nielsen
(2015) provides a textbook treatment for those
with no prior familiarity with neural networks.
Goodfellow, Bengio and Courville (2016) of-
fers a textbook treatment for those already
familiar who would like an in-depth review,
and Stevens, Antiga and Viehmann (2020) is
aimed at those who would like to learn key
concepts through hands-on implementations in
PyTorch.

In a vanilla feedforward neural network, all
neurons in one layer connect to all neurons
in the next layer. Deep fully connected net-
works are rarely used in practice. Rather a few
types of neural networks have dominated the
deep learning literature. This review focuses
on convolutional neural networks (CNNs; Sec-
tion III.2), recurrent neural networks (RNNs;
Section III.3), and the transformer (Sections
III.4, III.5, and III.6).

2. Convolutional Neural Networks

CNNs leverage the spatial structure present
in images and played a central role in usher-
ing in the deep learning revolution. Despite
the advent of a newer architecture for image
processing—the vision transformer (Section
III.6)—they remain widely used, can obtain
near-state-of-the-art performance when appro-
priately modernized, and can be lighter weight
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and easier to tune than vision transformers.
This section provides a brief introduction. I
recommend that those unfamiliar with CNNs
consult the short graphical introduction to con-
volution by Sanderson (2020), as a visual in-
troduction to the concepts described below is
particularly helpful. Additional resources are
on the ‘Convolutional Neural Network’ page
of the EconDL knowledge base.

Vision problems start with an image of a
given height (in pixels), width (in pixels), and
depth (e.g., 3 for an RGB image). Convolu-
tional layers are the core building block of a
CNN. The layer’s parameters consist of a set
of learnable filters, e.g., 3 × 3, 5 × 5, or 7 × 7
weight matrices. These filters are only applied
to the nodes immediately surrounding a given
node when computing the output for the next
layer and extend through the full depth of the
input. Each filter is convolved (moved) across
the input, producing an activation at each spa-
tial location. Using the same weights for dif-
ferent spatial locations drastically reduces the
number of parameters compared to fully con-
nected layers. Moreover, parameter sharing
ensures that features can be detected regard-
less of their position in the image. This gives
CNNs a degree of translation invariance, de-
sirable since e.g., a horse is a horse regardless
of its position in the image.

The locality bias inherent in small convo-
lutional filters is logical because the interpre-
tation of a pixel is more influenced by its
neighboring pixels than by distant ones. De-
spite the localized nature of these filters, a
CNN still achieves an extensive receptive field
through the depth of the network. CNNs are
adept at learning hierarchical features: lower
layers, which have a more limited receptive
field, capture simple patterns such as edges,
while deeper layers capture increasingly com-
plex structures.

In addition to convolutional layers, CNNs
also use pooling layers. If M different con-
volutional filters are applied to a neural net-
work layer, the depth of the next layer will be
M, since each filter produces an activation for

each spatial location. Pooling layers reduce
this depth, preventing the number of parame-
ters from becoming infeasibly large. Often, a
CNN consists of alternating convolutional and
pooling layers.

The central challenge to estimating neural
networks with many layers is the vanishing
gradient problem (Bengio, Simard and Fras-
coni, 1994). Backpropagation computes the
gradient of the cost function with respect to
each weight in the network. This requires ap-
plying the chain rule to find the gradient of
the loss with respect to the output of each
layer, and then the gradient of the output of
each layer with respect to its input. Deriva-
tives can become very small for extreme val-
ues of their inputs. Backpropagation multi-
plies small gradients together. Hence, the gra-
dient may become exponentially smaller as it
flows back to the earlier layers. If the gra-
dient becomes extremely small for the initial
layers, learning will be very slow or stop al-
together. The post on ‘Convolutional Neu-
ral Networks’ on EconDL examines the evo-
lution of CNN architectures, including key in-
novations that allowed for the optimization of
much deeper, more expressive networks, cir-
cumventing the vanishing gradient problem
(Krizhevsky, Sutskever and Hinton, 2012; Si-
monyan and Zisserman, 2014; Szegedy et al.,
2015; He et al., 2016; Xie et al., 2017; Howard
et al., 2019; Liu et al., 2022).

3. Recurrent Neural Networks

CNNs require fixed-size inputs, as neural
networks are initialized with weight matri-
ces of fixed dimensions (variably-sized images
need to be resized or padded). In contrast, re-
current neural networks (RNNs) are designed
to process variably-sized inputs and outputs.
They historically played an important role in
NLP (Hochreiter and Schmidhuber, 1997; Gr-
eff et al., 2016), though they have since been
superseded by the transformer. While re-
searchers generally should use a transformer
for NLP applications, I introduce RNNs as a
point of comparison to the transformer.
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RNNs process a sequence of inputs—e.g.,
tokens in a text—iteratively. At each time step,
they maintain a state that captures historical in-
formation about the input sequence. This state
is updated iteratively as the network processes
each element in the sequence, allowing the net-
work to ‘remember’ previous elements in the
variable-length input.

Long-range dependencies are important to
human language. To use a prominent example
from Vaswani et al. (2017), ‘The animal didn’t
cross the road because it was too tired’ ver-
sus ‘The animal didn’t cross the road because
it was too wide.’ Does ‘it’ refer to the ani-
mal or the road? This depends on dependen-
cies between ‘it’ and other tokens in the input.
The most prominent RNN is the bi-directional
LSTM (Long Short-Term Memory) (Hochre-
iter and Schmidhuber, 1997). Bi-directionality
captures dependencies in both directions by
feeding the input sequence forwards and back-
wards. Readers can find a more detailed intro-
duction to LSTMs in the EconDL knowledge
base.

4. The Transformer

The transformer (Vaswani et al., 2017)
has revolutionized NLP and made inroads in
nearly all areas of deep learning, including vi-
sion, audio, graphs, and reinforcement learn-
ing. For readers who are not familiar, I recom-
mend the Illustrated Transformer blog post by
(Alammar, 2018b), widely recognized as the
most accessible introduction. An annotation
of the original paper by Rush (2018) is also a
classic reference.

The original transformer was a neural trans-
lation model whose key ingredient is atten-
tion. All tokens (words or sub-words) in a se-
quence are fed into the model in parallel, and
the model attends to all other tokens in the con-
text to create contextualized representations
for each token. Contextualized representa-
tions contrast with traditional static representa-
tions of words (Mikolov et al., 2013; Penning-
ton, Socher and Manning, 2014; Olah, 2014),
where a given word in a training corpus always

has the same representation. The transformer
solves the locality bias of RNNs—where in-
formation is lost as the hidden state is passed
along to each sequential token—because it can
attend to any token in the sequence, whether
nearby or not.

Self-attention is quadratic, which limits the
length of text that can be passed into the model
at one time (the context window). A typical
context window length in open-source models
is 512 tokens. For many problems, this is suffi-
cient (e.g., the texts can be chunked, or the first
512 tokens are sufficient to form a meaning-
ful document representation). There are also
models with sparse attention mechanisms that
allow for long context windows.

Inputs are fed into the transformer in par-
allel, rather than sequentially as in an RNN,
allowing training to fully leverage the paral-
lel computing power of GPUs. This makes it
computationally feasible to train much larger
models on more data for longer, all of which
improve performance (Raffel et al., 2020).

5. Transformer Large Language Models

Most modern NLP applications use
transformer-based large language models
(LLMs). For those unfamiliar with LLMs or
needing a refresher, I highly recommend Jay
Alammar’s ‘Illustrated GPT-2/3’ (Alammar,
2019, 2020) and ‘Illustrated BERT’ (Alam-
mar, 2018a) blog posts, which provide an
intuitive graphical introduction to transformer
LLM architectures.

There are two main types of transformer
LLMs. Generative (decoder) models predict
the next word in a sequence (Radford et al.,
2019; Brown et al., 2020). They are typically
used for text generation. Since they are trained
by predicting the next word, they can only at-
tend to prior tokens when creating contextual-
ized representations for a given token. This is
called causal attention.

In contrast, masked (encoder) language
models are bidirectional: in creating contextu-
alized representations of words in a sequence,
they can attend to all words in the sequence
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FIGURE 3. TASKS PERFORMED WITH A TRANSFORMER ENCODER LANGUAGE MODEL.

(masked attention). The model is trained by
predicting masked tokens (Devlin et al., 2019;
Liu et al., 2019; Sanh et al., 2019a; Lan et al.,
2019; He et al., 2020). Encoder models are
typically used when a researcher aims to cre-
ate representations of text that entail feeding
an entire text to a model. Bidirectionality is
helpful for such tasks, because the context both
before and after a word is useful for creating
semantically meaningful representations of it.
Language models can also combine encoder
and decoder transformer blocks, e.g., Raffel
et al. (2019).

With the transformer architecture, the same
pre-trained language model can be used as the
“backbone” for a wide variety of tasks, facil-
itating transfer learning. This is illustrated in
Figure 3, which is adapted from an illustra-
tion in the original BERT paper (Devlin et al.,

2019). A transformer language model pro-
duces a vector representation for each token
(word or sub-word) in its input, as well as a
<cls> representation that represents the entire
input text. The first panel shows that full text
sequences can be classified by adding a classi-
fier head to the <cls> token. The classifier is
a feedforward neural network that aggregates
the nodes in the <cls> vector of the final trans-
former layer into a score for each class, using
learned weights. Alternatively, two texts can
be embedded jointly - separated by the spe-
cial token <sep> - and then a classifier can be
added to the <cls> token to classify the rela-
tionship between texts (panel b). Or, each in-
dividual token can be classified (e.g.,tagging
whether it refers to an individuals, location,
etc.) by adding classifier heads to each of the
token embeddings (panel c). Spans of text can
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also be identified (e.g., the answer to a ques-
tion; panel d).

A variety of different transformer pre-
trained language models are detailed in the
EconDL knowledge base post on ‘Transformer
Language Models.’

6. Vision and Audio Transformers

The transformer has transformed many
other areas of deep learning, including com-
puter vision (Dosovitskiy et al., 2020; Tou-
vron et al., 2021; Grill et al., 2020; Caron
et al., 2021; Ali et al., 2021; He et al., 2022;
Chen, Xie and He, 2021). Vision Transformers
(ViTs) use the same transformer architecture
as transformer language models, with some
adaptations to make them suitable for images.
Unlike in NLP, where transformer language
models have greatly outpaced the prior tech-
nology, in vision the gains from the trans-
former relative to CNNs are more modest (Liu
et al., 2022). An appropriately modernized
CNN will often be competitive with a simi-
larly sized ViT. Moreover, the smallest CNNs
(e.g., Howard et al. (2019)) are smaller than
lightweight ViTs (e.g., Mehta and Rastegari
(2021)) at present and can also perform well
on straightforward tasks. Practically, I recom-
mend starting with a lightweight CNN—which
will be easier and significantly cheaper to
train and deploy—and examining the perfor-
mance of a larger CNN or ViT model if the
lightweight model is inadequate. The EconDL
post on Vision Transformers provides more de-
tails about ViT architectures.

The extent to which the transformer can be
used to process highly diverse types of un-
structured data is strikingly illustrated by its
application to audio. State-of-the-art perfor-
mance was achieved by applying a ViT to
the spectrogram image of the audio (Gong,
Chung and Glass, 2021). Even more strikingly,
performance was maximized by pre-training
on ImageNet—the main benchmark for vision
that consists of over 14 million natural images
(e.g., of dogs, food, etc.)—a powerful illustra-
tion of transfer learning even across modali-

ties.

7. Optimizing Neural Networks

Being able to optimize a neural network is
clearly central to using them in research. The
optimizer (see e.g., Kingma and Ba (2014);
Goh (2017)), initialization (He et al., 2015),
and normalization (Ioffe and Szegedy, 2015;
Santurkar et al., 2018) are all important. To
estimate deep neural models, the researcher
must also select various hyperparameters (e.g.,
Li et al. (2017); Falkner, Klein and Hutter
(2018)). Interested readers are referred to the
post on ‘Basics of Training and Optimizing
Neural Networks’ in the EconDL companion
knowledge base. The packages on EconDL
choose reasonable defaults for various hyper-
parameters in an effort to make training neural
networks more user-friendly.

While there are various details at play, my
main practical takeaway from guiding many
students in optimizing neural networks is that
when performance is unexpectedly poor, it is
most often due to either a poorly chosen learn-
ing rate or incorrectly formatted input data.
The learning rate determines the size of the
steps taken by the optimizer while adjusting
weights during training. If it is too low, the
model won’t update; if it is too high, the model
weights will oscillate wildly. Moreover, data
are expected in a specific format, and trans-
formations may be performed on the fly (for
instance, many neural networks require fixed-
size inputs). Neural networks learn from em-
pirical examples, and unexpectedly poor per-
formance is often the result of feeding them
misformatted examples.

I also recommend that those new to deep
learning train and deploy models using a
cloud server specifically designed for this pur-
pose. The EconDL tutorials use Google Co-
lab. Installing deep learning packages lo-
cally requires resolving extensive dependen-
cies, which may be challenging for those with
limited experience. For more experienced
users who heavily utilize deep learning in their
research, purchasing their own GPUs can often
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provide significant cost savings.

IV. Training Data

High-quality training and evaluation data
are integral to the utility of deep learning. In
supervised learning, data are partitioned into
labeled and unlabeled sets. The unlabeled set,
which consists of all the data that the deep
learning model will be applied to, is typically
much larger than the labeled set. Deep learn-
ing is self-supervised when relevant labels are
gleaned automatically from the data itself. For
example, language models can be pre-trained
by predicting words that have been randomly
masked from a massive text corpus. Anal-
ogously, a masking strategy can be applied
to images for the self-supervised pre-training
of vision models (He et al., 2022). Self-
supervised learning is most commonly used
in pre-training, and then the pre-trained model
is transferred to another domain and applied
to unlabeled data (potentially following addi-
tional supervised tuning on a modest amount
of data from the target domain). Finally, in un-
supervised learning, there are no ground truth
labels, as the goal is to discover underlying
structures in the data, grouping them according
to similarities. Embeddings can be clustered,
for example, to discover these relationships.

Supervised methods are common in eco-
nomic applications, as the goal is often to use
neural networks to extract some characteristics
from unlabeled data. Economists might also
continue self-supervised pre-training. This is
most common when the domain of their appli-
cation shifts considerably from the domain that
the model was pre-trained on Gururangan et al.
(2020). For instance, an economic historian
analyzing 18th century legal texts might first
continue pre-training the language model on
that database (by predicting masked tokens),
in order to impart better understanding of 18th
century legal jargon.

Unsupervised learning is most useful for
data exploration. In empirical economics, the
norm is to specify a narrowly defined hypothe-
sis and test it statistically, which often lends it-

self to supervised applications. However, me-
thodical data exploration using unsupervised
methods can be a powerful tool for gleaning
stylized facts from novel unstructured data.

When conducting supervised learning, la-
beled data are further divided into training
data—used to train the model, validation
data—used to tune model hyperparameters or
select prompts, and test data—used only to
compute the model evaluations that will be re-
ported in the findings. The researcher should
always have a high-quality, representative test
set to evaluate model performance. If the data
used to evaluate model performance are not
representative of the unlabeled dataset—and
in particular, if some appreciable portion of
the unlabeled data has no support in the la-
beled data—model performance on the evalua-
tion data may diverge widely from model per-
formance on the unlabeled data, which is the
underlying object of interest.

In an ideal scenario, representative test
sets can be created through random sampling.
However, this is not always possible, partic-
ularly when classes that the researcher would
like to measure are highly imbalanced. Sup-
pose that a researcher needs to extract texts on
a topic of interest from a massive web corpus,
and the relevant topic appears only once in ev-
ery ten thousand texts. The labeling require-
ments for sampling enough positives randomly
are clearly infeasible. This scenario is com-
mon in social science, where researchers fre-
quently need to classify relevant information
from a massive corpus—e.g., media or govern-
ment documents—where only a tiny share of
content is about the topic of interest.

While strategies to draw the most informa-
tive samples to annotate have generated a large
machine learning literature on active learning
(EconDL provides a detailed discussion in the
context of text classification), there is little
work on selecting representative samples for
training, evaluation, or debiasing when class
imbalance is severe. Discriminative active
learning (Gissin and Shalev-Shwartz, 2019)
selects samples to label that maximize the dif-
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ficulty of distinguishing between the labeled
and unlabeled data and can work well with rel-
atively balanced data. It does not work well
with severe class imbalance because it fails to
sufficiently sample the rare class(es). Other ac-
tive learning approaches seek to sample near
the decision boundary of a classifier, which
will sample the rare class(es) and can maxi-
mize predictive accuracy. However, this will
provide an unrepresentative sample.

Social scientists, instead, frequently use the
presence of certain keyword(s) to choose con-
tent to label. However, by construction, this
fails to place positive sampling probability on
all instances, increasing the odds that some
types of unlabeled data have no support in the
labeled data. This can generate prediction bias
that is systematically correlated with the er-
ror term in the downstream causal estimating
equation—where the researcher intends to use
the deep learning model predictions—since se-
mantics and omitted variables often both vary
across space and time.

Embedding models (Section VIII)—deep
neural networks that create a space where dis-
tances between vector representations of texts
or images are meaningful—provide a metric
that can be used for stratified sampling of data
to label for training or evaluation. The closer a
text/image is to a set of queries about a class
(e.g., ‘this article is about tax policy’), the
higher the probability that it comes from that
class, making distances in this space useful
for stratified sampling. A stratified sampling
approach can also provide informative nega-
tives for training: samples that a pre-trained
model place near a query but that are not re-
lated to that query in the way the researcher in-
tends. This is an active area of research, where
economists have the potential to make impor-
tant contributions. The EconDL site will up-
date on this literature as it advances.

Training data need not be drawn from the
same distribution as the unlabeled data—given
the power of transfer learning—although pre-
dictive accuracy will typically decline with the
magnitude of the domain shift between the tar-

get and training data. Oftentimes, datasets that
already exist or can be extracted from web
texts allow for the cheap creation of a much
larger training set than the researcher could la-
bel by hand. High performance on a target
dataset is then ensured by further tuning on a
much smaller set of hand-crafted labels from
the target data.

Congruence labeling—when two (or more)
annotators label the same data points—is im-
portant for ensuring the quality of training
and evaluation data. Even seemingly sim-
ple tasks are often messier than expected once
taken to real-world unstructured data. Congru-
ence labeling also ensures that annotators have
understood the task and are producing high-
quality labels. In challenging labeling tasks,
researchers may wish for all labeled data to
be double-annotated, resolving discrepancies
by hand. In more straightforward cases, con-
gruence labeling may only be necessary for a
smaller subset of the data, to ensure that the
task is well-defined and annotators have prop-
erly understood the instructions. In machine
learning papers, the researcher is typically ex-
pected to report the congruence between anno-
tators, as well as to publish annotator instruc-
tions, and this can be useful in economic ap-
plications as well.

V. Bias and Uncertainty Quantification

There are many limitations to using
deep learning to solve social or eco-
nomic problems (see, for instance, pa-
pers from the ACM Conference on Fair-
ness, Accountability, and Transparency
https://facctconference.org/ and Cui
and Athey (2022)). Here, our focus is much
narrower: to impute or explore low dimen-
sional features of unstructured data that
humans are likely to agree on, in contexts
where the size of the raw dataset is orders
of magnitude too large to extract features
manually.

Caution is necessary when applying deep
learning to contexts that require subjective
judgment. For example, researchers have

https://facctconference.org/
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shown that the self-identified political orien-
tations of annotators influences their incon-
gruence on political sentiment labeling (Shen
and Rose, 2021). Sentiment classification in
the deep learning literature has been designed
largely around laptop, restaurant, and movie
reviews, contexts where there is typically an
explicit sentiment about the product that can
be validated by stars. In many applications
that economists care about—such as sentiment
in media data, political speeches, corporate re-
ports, etc.—sentiment can be much more im-
plicit, and humans may not agree on it. If a
model is fed annotations that reflect the sub-
jective biases of the annotator—versus a well-
defined ground truth—or if it simply does not
have enough examples because the distinctions
to be made are complex, it will make inac-
curate predictions that may be systematically
biased. Models can also inherit biases from
pre-training, and there are large literatures on
bias and fairness in AI (Mehrabi et al., 2021).
These challenges can be mitigated by sticking
to straightforward tasks with a clearly defined
ground truth.

Economists can make valuable contribu-
tions on uncertainty quantification, which is
uncommon in much of the deep learning liter-
ature. Conformal inference can provide uncer-
tainty quantification for prediction tasks. Fa-
cilitated by the collection of a ground truth cal-
ibration dataset, conformal methods produce
prediction sets with marginal coverage guar-
antees under mild conditions. A canonical tu-
torial is Shafer and Vovk (2008); see Cher-
nozhukov, Wüthrich and Zhu (2021), Cattaneo
et al. (2022), and Lei and Candès (2020) for
recent contributions.

Asymptotically motivated inference usually
requires that estimates of model parameters be
unbiased, which poses a problem for ‘black
box’ machine learning predictors that typi-
cally trade off bias and variance to produce
predictions with low mean squared error. A
long literature in semi-parametric inference
(e.g., Robins, Rotnitzky and Zhao (1994)) has
worked to remedy these issues, culminating in

a large, recent econometrics literature on de-
biased machine learning (e.g., Chernozhukov
et al. (2018); Chernozhukov, Newey and Singh
(2022)).

There are many parallels between the de-
biased machine learning literature in econo-
metrics and a literature on ’prediction pow-
ered inference’ in the deep learning space (e.g.,
Angelopoulos et al. (2023); Zrnic and Candès
(2023)). Broadly speaking, imputing struc-
tured characteristics from unstructured data
(the focus of the deep learning literature) and
causal inference (the focus of the economet-
rics literature) are special cases of a more gen-
eral problem of imputing missing data. In
causal inference, potential outcomes are miss-
ing, whereas in many deep learning predic-
tion applications, low-dimensional structured
characteristics are missing because it is pro-
hibitively costly to extract them from high-
dimensional unstructured data manually. The
prediction powered inference literature exam-
ines how deep learning predictions can be de-
biased using a high-quality auxiliary sample of
ground truth labels for the population of in-
terest. This information is used to measure
the bias induced by imputation, which is then
corrected, ultimately allowing the researcher
to perform valid inference without sacrificing
the information available from using a model
pre-trained on a larger dataset that makes bi-
ased predictions. The deep learning model is
treated as a black box. One can show that
the prediction powered inference framework is
equivalent to debiased machine learning.

VI. Reusability and Reproducibility in Deep
Learning

Deep learning has been built to a remark-
able degree upon open science and open data,
although recent years have seen a pronounced
shift towards proprietary models and data as
the commercial potential of the technology has
become increasingly clear. Nevertheless, the
amount of open resources is staggering, and
deep learning would not have made the strides
it has without widespread sharing of models
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and datasets. Given the centrality of trans-
fer learning and massive-scale pre-training, the
field as we know it would not exist without
open science.

The more economics can create an open sci-
ence culture around big data, whenever data
privacy concerns allow, the more we can ben-
efit as a profession from the positive external-
ities of transfer learning. For example, deep
learning researchers are often incentivized to
share their code on GitHub as soon as possi-
ble, as a way of staking claim to their con-
tribution, or to release a dataset as soon as it
is constructed so that a fast-moving literature
will use it for longer. Moreover, publication
venues in deep learning often require com-
pliance with agreed-upon metadata and ethi-
cal frameworks for data and code release (Ge-
bru et al., 2021; MLCommons, 2024; Mitchell
et al., 2019; Holland et al., 2018). While
I would not advocate that economics whole-
sale adopt these standards, it is worth consid-
ering whether there are standards for model
and dataset release that could facilitate repro-
ducibility and reusability of deep neural mod-
els in economics.

The largest hub for deep learning models
and data is Hugging Face. A wealth of lan-
guage models and text data can be found there,
some examples of which are examined in
the demo notebooks linked through EconDL.
Hugging Face recently acquired timm, a cen-
tral repository for vision models, making Hug-
ging Face a one-stop shop for many language
and vision tasks.

VII. Classifiers

Having provided an introduction to deep
learning, I now turn to applications. Classifi-
cation is frequently integral to economic anal-
yses. In the era of big data, a researcher may
first need to extract relevant data using clas-
sification. For instance, they might start with
a massive-scale corpus of news, social me-
dia posts, earnings calls, or legislative records
and need to extract only coverage about in-
terest rates, immigration, or higher education

out of millions or even billions of texts in the
full corpus. This much more limited corpus is
then used to extract the measure(s) to be used
in some downstream causal estimating equa-
tion. While this step often receives scant at-
tention, biased classification will result in se-
lection bias into the sample used in the down-
stream causal estimating equation, potentially
significantly biasing the conclusions. Alter-
natively, a researcher might impute structured
data—e.g., geographic locations mentioned in
texts, their sentiments or topics, or what type
of objects appear in a satellite image—using
classification.

This section first introduces classifiers (Sec-
tion VII.1), as well as describing the use
of generative AI for classification (Section
VII.2). Then, it introduces sequence classifi-
cation, in which a class label is imputed for a
sequence of text: e.g., a sentence, paragraph,
or document (Section VII.3). It compares the
performance of custom-trained classifiers to
generative AI on 19 different text classifica-
tion tasks. Classification can also be applied
to individual terms in a text (Section VII.4).
Finally, a classifier can be used to compare
texts to each other (Section VII.5). I focus on
text classification for ease of exposition. Im-
age classification–of a full image or pixels or
objects within an image–is analogous, using a
CNN or vision transformer rather than a lan-
guage transformer. It is covered in depth in the
EconDL knowledge base post titled ‘Convolu-
tional Neural Networks.’

1. An Introduction to classifiers

In traditional classification, a neural net-
work predicts a score for each of N classes, and
the input is assigned the class with the high-
est score. For those unfamiliar with classifiers,
Sanderson (2017) provides an excellent graph-
ical treatment of classification in the context of
classifying images of digits.

Recall the analogy that neural networks are
like Legos. Central to the power of trans-
former models is the ability to use the same
pre-trained language model as the backbone
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for a wide variety of classification tasks. This
is illustrated in Figure 3. A transformer lan-
guage model produces a vector representation
for each token (word or sub-word) in its in-
put, as well as the <cls> representation that
summarizes the entire input text. The text se-
quence can be classified by adding a classi-
fier head to the <cls> representation (panel
a). The classifier is a feedforward neural net-
work that aggregates the nodes in the <cls>

vector into a score for each class using learned
weights. As shown in Figure 3, panel c, in-
dividual tokens can likewise be classified by
adding classifier heads to their vector represen-
tations. Alternatively, two texts can be jointly
embedded and then a classifier can be added
to the <cls> representation to classify the re-
lationship between them (panel b).

Training a classifier is one of the most
straightforward tasks in deep learning. The
open-source package LinkTransformer can
be used to train text sequence classifiers, with
a demo available via EconDL. While the base
transformer language model could be frozen
when training a classifier, and various layers of
the transformer could be used as inputs to the
classifier, typically all parameters are allowed
to update, with the classifier layer attached to
the final layer of the transformer. Classifiers
can be binary (two classes), multiclass (more
than two classes, only one of which is pos-
itive), or multi-label (multiple classes can be
positive).

Classifier training is a supervised task, and
the model must see a sufficient number of ex-
amples from each class during training in order
to perform well on unlabeled data. When cre-
ating labels for classification, the labeled data
should be relatively balanced across classes
(e.g., positive and negative samples in the case
of binary classification).

To train a classifier, we also need an ap-
propriate loss function. The two most com-
mon losses for classification are Support Vec-
tor Machine (SVM) loss, also referred to as
hinge loss, and cross-entropy loss.

Given a sample with true label yi and the

score vector p for the class scores produced by
the neural network, the SVM loss is:

(2) Li = ∑
j ̸=yi

max(0, p j − pyi +1)

The loss sums over the incorrect classes, im-
posing a penalty if the score of the correct class
is not at least some threshold amount above the
score(s) for the incorrect class(es). The thresh-
old can be set to one without loss of generality,
as it just scales the learned weights.

Cross-entropy loss measures the dissimilar-
ity between the predicted score distribution
and the true distribution. Consider a neural
network used for a multi-class classification
problem with C classes. Let y be the true la-
bel of a sample, represented as a one-hot en-
coded vector. For a sample belonging to class
i, yi = 1 and y j = 0 for j ̸= i. Let z be the raw
numbers (often referred to as logits) produced
by the neural network for that sample. A clas-
sification layer will produce one score for each
class. The predicted score of class i, obtained
using the softmax function, is:

(3) pi =
ezi

∑
C
j=1 ez j

While the class scores are frequently re-
ferred to in the literature as ‘probabilities’,
they are not probabilities in a statistical sense.
How peaky they are will depend on the regu-
larization of the neural network.

The cross-entropy loss between the true la-
bel and the predicted distribution is:

(4) CE(y, p) =−
C

∑
i=1

yi log(pi)

As y are one hot vectors, this simplifies to:

(5) CE(y, p) =− log(ptrue class)
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where ptrue class is the predicted probability of
the correct class.

With SVM loss, once the score for the cor-
rect class surpasses a threshold, it is indifferent
to elevating the score of the correct class fur-
ther. On the other hand, the cross-entropy loss
pushes the correct class towards 1. This means
that during the early stages of training, accu-
racy might increase suddenly without a signif-
icant change in the loss. In real-world scenar-
ios, both losses typically yield comparable re-
sults.

Binary classifiers are evaluated using the F1
score, a metric that combines recall (true pos-
itives divided by true positives plus false neg-
atives) and precision (true positives divided by
true positives plus false positives).

(6) F1 = 2× precision× recall
precision+ recall

Perfect precision and recall yield an F1
score of 1, whereas the worst score is 0. F1
is a harmonic mean of precision and recall and
thus tends to be closer to the smaller of these
two metrics. If either the precision or the re-
call is low, the F1 score will also be low. F1 is
preferred over accuracy because if classes are
imbalanced, accuracy can be high simply by
always predicting the majority class.

When using a classifier with more than two
classes, the F1 score for each class can be cal-
culated individually and then combined in dif-
ferent ways. One approach is Macro F1, where
each class’s F1 score is averaged equally. An-
other method is Weighted F1, where each
class’s F1 score is weighted by the number of
true instances in that class. A third option is
Micro F1, where global true positives, false
positives, and false negatives are aggregated
across all classes, and F1 is computed as in
binary classification. Macro F1 is best suited
when equal performance across classes is de-
sired, while weighted or micro F1 are better
choices when the dataset is imbalanced and
performance on the more frequent classes is

most important.

2. Generative AI for classification

Large generative AI models like GPT,
Claude, or Llama (commonly referred to
in the literature as foundation models) use
a decoder transformer architecture (Section
III.5) to autoregressively generate text given
a prompt. In practice, they might also be
connected to an external database (e.g., the
internet) via a retrieval-augmented language
modeling (RALM) setup (the post on retrieval
in EconDL contains more information about
RALM). In a fundamental sense, these models
are performing classification, autoregressively
predicting the most likely next token in a dis-
crete vocabulary at each time step. By default,
models like GPT are stochastic; they predict
the next token from a distribution of the most
probable tokens.1

To perform classification tasks using gener-
ative AI, the user needs to prompt the model.
Prompting a generative language model is, in
many ways, less straightforward than tuning a
classifier via gradient descent, as the space of
discrete prompts is infinite and prompting has
generated a large and unwieldy literature.

A few clear insights are though worth em-
phasizing. Centrally, prompt tuning should be
done on a validation set, never on the test set
used to evaluate performance. The latter may
overfit the prompt to the idiosyncrasies of the
test set, making performance on it unrepresen-
tative of performance on the unlabeled data.

A literature on chain-of-thought prompt-
ing suggests breaking tasks down into simple
steps, making them more digestible (Wei et al.,
2022). This aligns closely with my experience,
where simple prompts work much better than
lengthier and more detailed ones. If a prob-
lem requires lengthy instructions, try to break
it down into multiple problems, prompting the
model at each step. There is also literature on
demonstrating tasks for generative LLMs (e.g.,

1At the time of writing, setting top p to 0 makes GPT
deterministic.
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Khattab et al. (2022)). Whether this is useful
will depend on the nature of your task, and I
recommend checking whether demonstration
helps using a validation set. Liu et al. (2023)
provide a review of prompt engineering. For
autoregressive models like GPT, they recom-
mend prefix prompts; e.g., “I love this class.
What’s the sentiment of this review?” This
contrasts with cloze prompts: “I love this class,
it is a [z] class.”

This paper examines the performance of
GPT-3.5 and GPT-4 on topic classification of
historical newspaper articles. Over the past
year, I have performed this exercise with older
and newer models, as well as GPT-4o and
GPT-4 Turbo. GPT-4 and GPT-4o perform
similarly, edging out Turbo. GPT-4o mini per-
forms worse. I haven’t seen any systematic im-
provements with new releases. Your mileage
may vary, with the new releases that will no
doubt be available by the time this article is
published.

I also examined two other leading AI mod-
els, from Anthropic: Claude Haiku and Claude
Opus. These led to significantly worse perfor-
mance (with F1 scores typically 10-40 points
lower than GPT) and are not reported due to
space constraints. The drivers of this lower
performance are twofold. First, Claude re-
fused to produce an output for texts that it
assessed as harmful. A distinguishing fea-
ture of Claude is its ‘Constitutional AI’ frame-
work, which sets out certain ethical principles
(e.g., harmlessness necessitates that responses
should be peaceful, ethical, and avoid con-
tent that might be considered offensive in non-
Western cultures). Some articles on past con-
flicts (mostly objectively reporting on events)
and a range of other topics (e.g., content about
the introduction of contraception written in
the 1960s) were considered harmful. More-
over, Claude didn’t always generate the de-
sired Yes/No format, making it impossible to
extract whether the article was on-topic. Nei-
ther of these behaviors arose with GPT. Per-
haps this could be fixed with more prompt tun-
ing, or it could change with a new release.

Regardless, with a classifier it is often fairly
straightforward to interpret why it makes par-
ticular errors and how to fix them (by adding
more training data for the types of instances
it is confusing), whereas GenAI at present
can feel more like a black box. There is
more going on under the hood, with models
trained with reinforcement learning to produce
responses deemed desirable by the commercial
entities training the models. This may or may
not pose a problem for a given academic appli-
cation and underscores the importance of rig-
orous evaluation with a test set.

The pros of generative AI for classification
are: 1) startup costs are low, requiring mini-
mal programming expertise or understanding
of what is going on under the hood, and 2) it
can be used zero-shot (without the user pro-
viding training data), whereas tuning a classi-
fier requires training data. We will see that,
if anything, custom-trained classifiers tend to
have a performance edge on text classifica-
tion, but straightforward tasks can be per-
formed well with generative AI. This is con-
sistent with the broad consensus that human-
level performance can generally be attained on
supervised tasks given adequate, high-quality
training data.

This brings us to potential disadvantages of
generative AI. Using a large model behind an
API does not provide the same fine-grained
control as training a classifier. While models
such as GPT allow users to expose the model
to empirical examples, for the experiments in
this paper, this did not lead to improvements
in performance. It is not fully understood
how demonstration through prompting condi-
tions these models, whereas it is clear how
providing training examples updates a classi-
fier through gradient descent. Not all mod-
els learn equally when exposed to the same
amount of training data (as demonstrated em-
pirically in Section X), and lightweight mod-
els like those used with customized classifiers
tend to update very efficiently. A custom clas-
sifier also has an edge when it comes to inter-
pretability and reproducibility. Results from
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a commercial API may no longer be repro-
ducible if a model is deprecated, and as dis-
cussed above, commercial GenAI models can
be more of a black box. These concerns could
be mitigated by using an open-source founda-
tion model, such as Meta AI’s Llama (Tou-
vron et al., 2023). The startup costs and hard-
ware requirements, however, negate the ease-
of-use advantage. Finally, classifiers using a
lightweight backbone such as RoBERTa (Liu
et al., 2019) are very cheap to deploy over a
massive number of texts, whereas commercial
models at present can be expensive for large-
scale problems. This may change if competi-
tion increases and research on cheap deploy-
ment advances.

To decide whether a classifier or generative
AI is most suitable for a task, I would recom-
mend first doing a back-of-the-envelope cal-
culation to ensure that generative AI is within
budget. If so, create test and validation sets,
tune prompts, and evaluate its performance. If
performance is not adequate, a training set to
tune a custom classifier will be necessary. If
the user knows ex ante that guaranteeing repro-
ducibility is imperative, that there is substan-
tial domain shift from web texts, or that the
task requires fine-grained control, they might
go straight to training a custom classifier. Data
privacy requirements can add an additional
layer to consider for those working with confi-
dential data.

3. Sequence classification

Economists might wish to impute a variety
of structured information at the level of a text:
e.g., its topic, the type of content it contains, or
its sentiment. To illustrate text sequence clas-
sification, this section trains 19 different bi-
nary topic classifiers, applied to massive-scale
databases of historical news (Dell et al., 2023;
Silcock et al., 2024), and compares them to
generative AI. It would have been very diffi-
cult for annotators to keep 19 different topic
definitions in mind to create multi-class labels;
hence, binary classification is used. Binary
classifiers cannot be combined into a multi-

label classifier, as negatives for one topic may
be positives for another. Keeping prompts
simple for generative AI also suggests binary
classes.

The annotated data were congruence-
labeled by highly skilled annotators, with dis-
crepancies resolved by hand. Congruence la-
beling ensured high-quality data and facili-
tated the development of a well-specified def-
inition. For example, in the case of the crime
classifier, annotators disagreed on whether ar-
ticles about Watergate should be considered
on-topic, and a zero-shot model showed a mas-
sive spike in crime coverage in 1974 due to
Watergate. While potentially a reasonable def-
inition, I did not want crime coverage to be
skewed by political scandals (which receive
massive coverage), and the classifier quickly
learned this with a modest number of labels.

A frequent question is how many labels are
required. This will vary. Topics that are more
diverse or require learning a more complex
definition will require more labels. Topics that
were seen many times in the pre-training of
the language model may require fewer labels.
Fortunately, training a classifier is compute-
efficient. If, after the first round of training,
results are unsatisfactory, it is straightforward
to add more labels and retrain. An error anal-
ysis may give a sense of what types of texts
require more training examples. Since label-
ing is costly, I recommend starting with fewer
labels and adding more if needed.

Table 2 provides the split statistics for the
various topic classification tasks examined in
this section.2 Labeled data are randomly split
into training, validation, and test data. Val-
idation data are used to select hyperparame-
ters, select the model checkpoint (when to stop
training), and to tune prompts, whereas the test
data were used only to compute Table 2. The
prompts for Table 2 are listed in the appendix
(Table 4.

The classifiers were trained with

2The politics classifier is taken from a published paper
(Dell et al., 2023) with different aims, and hence the split
shares and overall number of annotations differ somewhat.
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LinkTransformer, which supports using any
base language model available on Hugging
Face. We used DistilRoBERTa (82M parame-
ters) (Sanh et al., 2019b) and RoBERTa large
(335M parameters). RoBERTa (Liu et al.,
2019) is a widely used, improved version of
BERT. Distilled language models are smaller
models that are trained to match the perfor-
mance of a larger model. The distilled version
runs faster but often with a performance loss.
We used a consistent set of hyperparameters
across classification tasks, which appear to
work well more generally (a learning rate of
1e−6 or 1e−5 and a batch size of eight).

In most cases—across a diversity of top-
ics—the tuned classifier tends to outperform
or equal the performance of GPT, though for
the more straightforward tasks, GPT’s perfor-
mance can be very good, particularly in the
case of GPT-4. The training data used to pro-
duce these classifiers are high quality. With
lower-quality labels, such as those created with
online annotation platforms where quality is
notoriously poor, a custom-trained classifier
may well be consistently worse than GPT.
These comparisons may also change in the fu-
ture with further innovation in open source and
commercial models.

More generally, generative AI performs best
on straightforward topics that it was likely
extensively exposed to during pre-training.
The further the domain shifts from train-
ing data—primarily modern web texts—the
more performance deteriorates. For horo-
scopes, obituaries, and articles on the polio
vaccine—all extremely straightforward—GPT
performs nearly perfectly (as do the classi-
fiers). However, there are also topics for which
GPT performs poorly; for example, politics,
a topic that is challenging because it is broad
and diverse, with content drawn from the late
19th and early 20th centuries and including
both local and national politics. World War
I has an F1 score from both GPT models in
the low 70s, much worse than the Vietnam
War, which likely has greater representation in
the training corpus. Moreover, language has

changed more since World War I, translating
into greater domain shift. Yet with minimal la-
bels, the RoBERTa classifiers can adjust to this
domain shift.

At present, GPT is likely to be beyond the
budget of most social science researchers for
massive corpora, though I do not cite figures
here as prices fluctuate and could change con-
siderably depending on competition and tech-
nological advancement. Training a RoBERTa
classifier on the number of labels shown here
is very cheap (at the time of writing, it could be
done within minutes on a $9.99/month Google
Colab plan or a mid-range Nvidia GPU card).
I have also had students, with patience, train
similar models on a laptop, though getting ac-
cess to a decent GPU through cloud compute
or dedicated hardware is preferable. Deploy-
ing the classifiers, even across millions of ar-
ticles, is also cheap, and can be done either
with cloud CPUs or on a mid-range GPU card
in hours. One can circumvent the expense of
generative AI by training a classifier on la-
bels predicted by GPT. Table 2 shows this can
work when GPT produces very high-quality
labels. However, where GPT performs less
well, training on noisy data can magnify er-
rors.

Figure 4, drawn from Silcock et al. (2024),
takes binary classifiers that apply across time
and deploys them to a dataset of 2.7 million
unique newswire articles published between
1878 and 1977. Various trends are evident,
such as the Prohibition-related crime coverage
spike in the 1920s or the surge of Civil Rights
and protests coverage in the 1960s.

It is worth saying a word about how neural
methods compare to sparse methods for text
classification, which (with varying degrees of
sophistication) rely keywords. For example,
one common sparse method is TF-IDF: Term
Frequency (TF) is the raw count of term t
in document d. Inverse Document Frequency
(IDF) measures the importance of a term in the
entire corpus. If a word appears in many docu-
ments, it’s not a good identifier of a given doc-
ument. The IDF of a term t for a corpus D
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TABLE 2—F1 ON TEST SET AND SUMMARY OF TRAIN-TEST SPLIT

Topic F1 on test set # of labels

GPT-3.5 GPT-4 GPT-3.5
Trained
Model†

Distil
RoBERTa

RoBERTa
Large

Train Eval Test

advice 0.72 0.85 0.55 0.87 0.97 319 68 68
antitrust 0.85 0.94 0.84 0.92 0.94 329 70 70
bible 0.52 0.81 0.10 0.85 0.87 314 67 67
civil rights 0.59 0.87 0.54 0.85 0.87 943 202 202
contraception 0.75 0.91 0.72 0.88 0.97 597 127 127
crime 0.85 0.80 0.85 0.85 0.90 463 98 98
horoscope 1.00 1.00 0.92 0.96 1.00 288 61 61
labor movement 0.77 0.89 0.79 0.94 0.91 253 54 54
obituaries 0.98 1.00 1.00 0.96 1.00 272 57 57
pesticide 0.58 0.91 0.71 0.89 0.98 873 187 187
polio vaccine 0.92 0.99 0.94 0.97 0.97 350 74 74
politics 0.67* 0.62* 0.74 0.86 0.85 2,418 498 1,473
protests 0.74 0.81 0.79 0.91 0.90 351 75 75
Red Scare 0.81 0.86 0.79 0.90 0.91 1,852 396 396
schedules 0.79 0.95 0.81 0.95 0.96 346 74 74
sports 0.80 0.92 0.88 0.94 0.94 339 72 72
Vietnam War 0.91 0.94 0.98 0.98 0.99 738 157 157
weather 0.94 0.92 0.94 0.95 0.95 569 57 57
World War I 0.72 0.74 0.51 0.89 0.92 690 164 192

Note: †This column reports the F1 for trained models (based on either DistilRoBERTa or RoBERTa-Large, whichever works
better) using labels generated by GPT-3.5.
* The results with asterisks were produced on a random sample of 500 out of total 1,473 articles in the test set.

is given by log Total number of docs in D
Number of docs with term t in D . The

TF-IDF score for a term is simply the prod-
uct of its TF and IDF scores. The higher the
TF-IDF score, the more important a term is to
a specific document relative to the context of
the entire corpus. To rank documents from a
corpus based on their similarity to a query us-
ing TF-IDF, each document and query is rep-
resented as a sparse, high-dimensional vec-
tor, with each dimension corresponding to a
unique term from the corpus. The weight of
each term in the vector is its TF-IDF score.
The angle between any two vectors captures
the similarity between the texts. One can think
of this as akin to a keyword search that down-
weights terms that appear across the corpus.

We refer to methods like TF-IDF as sparse

because each term in the corpus forms a di-
mension in the vector space. Most terms in the
vocabulary will not be present in a single doc-
ument, leading most entries in the term vector
to be zero.

Sparse methods are useful when exact term
overlap is highly informative. However, re-
lying on term overlap is often a major short-
coming, as language is complex. There are
many ways to say the same thing, and the same
term can have different meanings. Moreover,
noise (e.g., typos, OCR errors, abbreviations)
is ubiquitous. Semantics vary across time and
space, as do many omitted variables. This
could result in correlation between prediction
error and the error term in the causal estimat-
ing equation where the keyword predictions
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FIGURE 4. SHARE OF NEWSWIRE ARTICLES WITH A GIVEN BINARY TOPIC TAG.

are used. Moreover, while terms can be mined,
more often they are simply chosen, creating a
researcher degrees of freedom problem.

Neural methods address these shortcom-
ings by using a large language model to map
texts to a dense vector representation, e.g, a
768-dimensional vector composed of non-zero
terms. The dimensionality of this vector de-
pends on the base language model. The pre-
trained language model is imbued with lan-
guage understanding, and hence dense meth-
ods account for contextual and semantic sim-
ilarities. This allows them to generalize over
synonyms and semantically similar phrases,
and to be more robust to other noise.

Dell et al. (2023) compare the neural clas-
sifier for politics, shown above, to mined
keywords as well as keywords suggested by
ChatGPT. Neural methods lead to significantly
more accurate predictions.

4. Token classification

Researchers may need to extract informa-
tion about individual terms in a text, rather
than the text as a whole. This problem is anal-
ogous to sequence classification, except that
classifier heads are added to the representa-

tions for each token in the final layer of the
transformer, rather than only to the <cls> rep-
resentation (Figure 3, panel c).

This section develops an example of to-
ken classification, named entity recognition
(NER), which detects named entities in texts.
These entities can be defined however the re-
searcher desires, as long as a clear, consis-
tent definition and sufficient labels for train-
ing exist. For example, the researcher may
want to identify locations referred to in so-
cial media posts. Alternatively, a researcher
extracting family relationships from obituary
data might wish to tag the relationships of indi-
viduals to the deceased (child, parent, sibling,
officiant, etc). Or, a researcher wishing to con-
vert biographical texts into a structured dataset
might tag birthplace, mother, father, university,
spouse, and employer.

NER is a classic task that has generated
a very large literature, and there are many
open-source pre-trained models and datasets
on Hugging Face. In this literature, entity
classes typically include person, location, and
organization. CoNLL is a prominent bench-
mark (Sang and De Meulder, 2003) used to
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FIGURE 5. SHARES OF ENTITY TYPES IN NEWSWIRE ARTICLES.

pre-train various models on Hugging Face.
WNUT is another (Nguyen et al., 2020), which
focuses on noisy user-generated texts (tweets).
A researcher will need to create labels if they
depart from the entity types emphasized by the
benchmarks. NER typically uses BIO label-
ing - the first token in an entity is labeled B
(for begin), the following tokens are labeled I
(for interior), and tokens that are not of inter-
est are labeled O. If the entity types of interest
are people (P) and locations (L), tags would be
B-P, B-L, I-P, I-L, and O.

Figure 5 presents results from applying
NER to historical newswire articles, plotting
the shares of over 27 million entities that fall
into four categories: person, location, organi-
zation, and miscellaneous. The results are sen-
sible, for example showing a spike in location
and miscellaneous named entities (e.g., aircraft

names) during World War II.
One can also ask generative AI to recog-

nize entities in text and convert the output into
a table. As with sequence classification, re-
searchers can test whether performance is ade-
quate for their needs by constructing represen-
tative validation and test sets.

5. Relationships between texts

There are a variety of contexts in which we
would like to measure whether two texts are re-
lated in some pre-specified way. For example,
we could phrase topic classification as a task
in which we would like to classify whether
one statement entails another: does the article
text entail the statement “this article is about
monetary policy”? Alternatively, are two texts
noisy duplicates of each other? Do they take
the same stance on a political issue? Does one
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follow the other?
Figure 6 illustrates two approaches to com-

paring texts. The top shows a cross-encoder:
two texts are concatenated, with a <sep> token
between them. These texts are jointly passed
into the transformer, and a classifier head clas-
sifies how they are related. This approach al-
lows for full cross-attention between all tokens
in each of the texts. The bottom figure illus-
trates a bi-encoder approach: texts are embed-
ded separately, and then we compute the simi-
larity between them using some distance met-
ric, such as cosine similarity. Bi-encoders are
very useful, and we elaborate on them in Sec-
tion VIII.

Cross-encoder

Bi-encoder

FIGURE 6. ARCHITECTURES TO COMPARE TEXTS.

A cross-encoder allows for full cross-
attention between terms. Because they are
jointly embedded, the terms in the texts being
compared attend flexibly to each other when
creating representations. In contrast, a bi-

encoder computes a single representation for
each text separately, and then these represen-
tations are compared. Hence, cross-encoders
tend to have higher accuracy. However, they
also have significant drawbacks. Most cen-
trally, if we need to compare M texts to N other
texts, this would require embedding M × N
texts. This quadratic cost quickly becomes in-
feasible, since each text is passed through a
neural network with hundreds of millions of
parameters.3 In contrast, for the bi-encoder to
compare M texts to N other texts, only M +
N embeddings are required, making this ap-
proach highly scalable. To get the best of both
worlds, the literature often uses a bi-encoder to
get the n most similar texts to a query text (for
some small n), and then re-ranks these matches
with a cross-encoder.

VIII. Embedding models

To estimate a classifier, the classes must be
specified ex ante, since the number of classes
determines the number of parameters in the
neural network, and classes must be seen in
training. Prompting generative AI for classi-
fication tasks also entails specifying what the
classes of interest are. However, there are a
variety of problems where the classes are not
known ex ante or where the researcher would
like to add new classes later without having to
retrain the model. Moreover, if the number of
classes is large, it can become computationally
intractable to compute the softmax over all the
classes for the loss function.

These common scenarios can be addressed
by working directly with the embeddings from
the final layer of the transformer or CNN,
rather than estimating an additional neural net-
work layer (the classifier) that maps embed-
dings to class scores. This avoids the pre-
specification of classes. Moreover, vector sim-
ilarity calculations are highly optimized, al-
lowing for problems at the scale of millions or
even billions of classes.

3Moreover, if we ask a cross-encoder to classify if a is
the same as b, b is the same as c, and a is the same as c,
intransitivities may result.
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This section introduces a variety of appli-
cations that can be approached with embed-
ding models. Record linkage (e.g., of indi-
viduals, firms, locations, or products across
datasets) is a common task that can be framed
as a classification problem with many classes
(e.g., each individual, firm, etc.). It is partic-
ularly amenable to embedding methods (Sec-
tion VIII.2). These methods can handle
settings—like multilingual linkage or linkage
with multiple, noisy text descriptions—that are
very difficult to tackle with traditional string
matching methods. Similar methods can be
used to link mentions of individuals, firms, etc.
in unstructured texts (e.g., social or print me-
dia, firm filings, biographies, government doc-
uments) to an external knowledge base such
as Wikipedia (Section VIII.3). Tracking the
spread of text or images through media is an-
other application of potential interest, where
the classes are often unknown ex ante (Sec-
tion VIII.4). In some cases, the aim may be
exploratory, to uncover the stylized facts in a
massive novel text or image dataset, and em-
bedding methods are well-suited to such de-
scriptive analyses. Finally, optical character
recognition (OCR) can be framed as an image
classification task, where the researcher might
wish to add characters or words subsequently
without retraining the model, suggesting em-
bedding methods (Section VIII.5).

Working directly with embeddings requires
distances between vector representations to be
meaningful. The geometric properties of pre-
trained transformer language models are not
well-suited to this task. For example, repre-
sentations of low-frequency words are pushed
outwards on the hypersphere. The sparsity of
low-frequency words violates convexity, and
the distance between embeddings is corre-
lated with lexical similarity. This leads to
poor alignment between the embeddings of
semantically similar texts and poor perfor-
mance when individual term representations
are pooled to create an average representation
for text sequences (Ethayarajh, 2019; Reimers
and Gurevych, 2019).

Mathematically, the problem is that the em-
bedding space created by a pre-trained trans-
former model is not isotropic, meaning that
the representations are not evenly distributed.
When embeddings are isotropic, no particu-
lar direction is favored. This uniform distri-
bution ensures that the distances between vec-
tors accurately reflect their relationships, mak-
ing the space more effective for tasks that de-
pend on these distances. Contrastive learning
is a widely used method that improves isotropy
and is discussed before turning to embedding
model applications.

1. Contrastive learning

Contrastive learning aims to learn similar
representations for semantically similar inputs
and dissimilar representations for semantically
different inputs, where the definition of sim-
ilarity is given by empirical training exam-
ples. The contrastive loss function encourages
the model to reduce the distance in embed-
ding space between positive examples (e.g.,
similar texts or images) and increase the dis-
tance between negative examples (e.g., dissim-
ilar texts or images). Contrastive training re-
duces anisotropy (Wang and Liu, 2021), sig-
nificantly improves pooled representations of
text sequences (Reimers and Gurevych, 2019),
and improves alignment between representa-
tions of semantically similar texts.

Contrastive learning follows the bi-encoder
setup shown in Figure 6. Bi-encoders form
a single representation for each instance, by
passing it through a transformer and pooling
(averaging) term level embeddings.4 Repre-
sentations can be compared by computing their
vector similarity. In practice cosine similarity
is frequently used since representations are on
a unit hypersphere.

There are different options for the loss func-
tion depending on the training data. Con-
trastive loss (Chopra, Hadsell and LeCun,
2005) uses positive and negative pairs, incen-

4Representations are pooled rather than using the <cls>
token because this has been shown to have better perfor-
mance (Reimers and Gurevych, 2019).



VOL. VOLUME NO. ISSUE DEEP LEARNING FOR ECONOMISTS 27

tivizing positives to have the same representa-
tion and negatives to be above a threshold dis-
tance apart. A cosine loss uses a continuous
measure of the difference between instances.
With triplet loss (Hermans, Beyer and Leibe,
2017), training data consist of triplets: an an-
chor, one positive example for the anchor, and
one negative example. Embeddings of posi-
tives are incentivized to be more similar to the
anchor than negatives. With the InfoNCE loss
(Oord, Li and Vinyals, 2018), multiple nega-
tive examples are compared to a single positive
example. Supervised contrastive loss (Khosla
et al., 2020) generalizes InfoNCE to allow for
multiple positive and negative examples. More
details, including mathematical formulations,
are provided in the ‘Contrastive Learning’ post
in the EconDL knowledge base.

The metric space created by a neural net-
work should be interpreted based on the con-
trastive loss function used to train the network.
For instance, with contrastive loss, instances
in the same class are incentivized to have simi-
lar representations, whereas different instances
are incentivized to be above a threshold dis-
tance apart. Hence, local distances are mean-
ingful, but global distances are not, since being
more dissimilar beyond the threshold does not
affect the loss.

When contrastively training on paired data,
the weights of the two encoders used to embed
each of the instances can be the same (a sym-
metric encoder) or different (an asymmetric
encoder, as in Karpukhin et al. (2020)). Sym-
metric encoders provide a more parsimonious
model, and hence require less data and com-
pute to train. In practice, they can perform well
even when two distinct types of instances are
being encoded (e.g., search queries and docu-
ments that contain their answers).

Selecting informative negative examples is
important for contrastive learning. If the nega-
tives are too ‘easy’—e.g., they are dissimilar in
the embedding space of the pre-trained model
used to initialize training—little is learned. In
some contexts, the researcher can use prior
knowledge to select ‘hard’ negatives for train-

ing. In other contexts, they can be mined
by using a pre-trained model to choose nega-
tive examples with similar embeddings. This
can work well if the researcher knows ex ante
which instances are negative, as would be the
case when training on synthetically generated
data. When negatives are drawn from unla-
beled data, however, mining hard negatives
without a human in the loop risks inadver-
tently selecting positives. Sometimes train-
ing on random negatives may be sufficient,
although this often requires large batch sizes
(e.g., GPU cards with a lot of memory), which
is not amenable to academic compute budgets.
This section’s applications consider how nega-
tives are selected.

Embeddings are also available off-the-shelf.
Sentence-BERT (Reimers and Gurevych,
2019) is a prominent and well-supported
open-source model. (In this literature, the
term ‘sentence’ is used to refer to any text
sequence, which could be a phrase, sentence,
or entire document.) Moreover, OpenAI sells
quite affordable sentence embeddings.

While there has been considerable interest
in developing all-purpose embedding models
that can excel zero-shot on any task (Cao,
2023)—and a larger model will on average
outperform a smaller model zero-shot—fine-
tuned lightweight embedding models have
important advantages over zero-shot embed-
dings. Intuitively, embeddings provide a single
representation for each text (or image). An off-
the-shelf representation will capture lots of dif-
ferent information about the text/image. How-
ever, the researcher is typically interested in
some narrowly defined aspects of it. Fine-
tuning will accentuate the relevant dimensions,
creating better separation between classes in
embedding space.

Consider the following empirical exam-
ple. I take the comparative agendas dataset
on U.S. legislation (Wilkerson et al., 2023),
which assigns topic tags to congressional bills,
and calculate pairwise similarities between
the embeddings of the legislative descriptions
using three different models: off-the-shelf
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FIGURE 7. EMBEDDING SIMILARITIES WITHIN AND ACROSS TOPICS.

lightweight S-BERT embeddings (Figure 7,
panel a), OpenAI large embeddings (panel b),
and embeddings produced by tuning S-BERT
on paired positives and (random) negative bills
from a training split of these data (panel c).
The blue distribution plots cosine similarities
within topics, and the red line plots cosine sim-
ilarities between topics. Identical representa-
tions have a similarity of 1.

With off-the-shelf models, embeddings are
indeed more similar within than across topics
(e.g., the blue distribution is shifted to the right
of the red distribution), but the differences are
not stark. SBERT and OpenAI perform sim-
ilarly. In contrast, once the model has been
tuned on target data, embeddings are much
more similar within topic than across topic,
as the contrastive training accentuates the im-

portance of topic in determining how the lan-
guage model maps texts to embedding space.
Much of the overlap in distributions comes
from edge cases where articles fall between
topics or cover multiple themes. Panel (d) uses
the model tuned on U.S. bills to compare em-
beddings of UK Acts of Parliament within and
across topics. While there is some domain
shift, there continues to be marked separation,
showing the fine-tuned model’s ability to gen-
eralize to similar problems.

2. Record linkage with structured data

Record linkage is central to many economic
analyses. A researcher might need to link indi-
viduals, locations, firms, organizations, prod-
uct descriptions, or academic papers across
datasets. Traditionally, records have been
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FIGURE 8. LinkTransformer ARCHITECTURE.

linked using measures like Levenshtein edit
distance—which counts the number of char-
acter insertions, deletions, and substitutions
to convert one string into another—or Jac-
card similarity—which computes the similar-
ity between substring n-gram representations
of strings. A recent machine learning litera-
ture focused on matching across e-commerce
datasets shows the promise of transformer
LLMs for improving record linkage. Yet at
the time of writing, these methods have not
yet made widespread inroads in social science,
with rule-based methods continuing to over-
whelmingly predominate (e.g., see reviews by
Binette and Steorts (2022); Abramitzky et al.
(2021); Bailey et al. (2020)).

To make these methods more acces-
sible, Arora and Dell (2024) designed
LinkTransformer, a package for using
transformer models for record linkage that is
geared towards social scientists. The study
documents that transformers outperform
traditional string matching methods across a
variety of tasks and languages, often by a wide
margin. Applications include linking 1940
Mexican tariff schedules and linking 1950
Japanese firm-level records using multiple
noisy fields, as well as linking modern firms
and products across six languages. A multilin-
gual model can link products across languages
without the need for translation.

This work was motivated by a variety of
projects that I had to abandon in the pre-

deep learning era because sparse methods per-
formed poorly and hand-linking was infeasi-
ble. As with any predictive task, it is incum-
bent upon the researcher to evaluate whether
performance is acceptable using a test set.

The LinkTransformer model architecture
is shown in Figure 8. The texts that need
to be matched are encoded using a trans-
former language model. For each query,
LinkTransformer finds the nearest neighbors
in the corpus, as measured by the cosine sim-
ilarity between the embeddings. This is ex-
tremely fast, as it uses the highly optimized
FAISS (Facebook Artificial Intelligence Sim-
ilarity Search) backend (Johnson, Douze and
Jégou, 2019). LinkTransformer returns a
ranking as well as the cosine similarity scores,
which can be used for 1-1, 1-many, or many-
many merges, including no matches (captured
when the similarity to the nearest record is be-
low some threshold).

Just as traditional sparse methods like edit
distance return distances between records,
LinkTransformer computes a distance met-
ric powered by all the semantic knowledge
embodied in the pre-trained language model,
as well as any additional knowledge gained
through contrastive training. For example,
ABC Corporation, ABC Co., and ABCC are
very similar semantically—and hence nearby
in embedding space—since ‘Co.’ and ‘C’ rep-
resent ‘Corporation,’ but these strings have a
high Levenshtein edit distance. Examples like
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this are common in record linkage tasks, given
the prevalence of abbreviations, different ways
to describe the same product or firm name,
OCR errors, and typos. Embedding similar-
ity can be used analogously to how researchers
use string distance metrics.
LinkTransformer seamlessly supports

linking with multiple fields, serializing fields
by concatenating them with a <sep> token
that the package automatically selects to be
compatible with the base language model
tokenizer. The study provides an example of
linking 1950s Japanese firms across different
large-scale, noisy databases using the firm
name, location, products, shareholders, and
banks. This type of linkage problem would
be highly convoluted with string matching
methods, as fields are noisy (e.g., products are
described in different ways across datasets,
different subsets of managers and shareholders
are listed, etc.). A large language model can
handle these challenges with ease because it
captures semantic similarity.
LinkTransformer allows users to employ

Sentence Transformer models, OpenAI em-
beddings, models tuned on the target task,
or any transformer language model available
on Hugging Face. The general picture that
emerges, across 20 diverse linking tasks, is
that models custom trained on a modest num-
ber of labels tend to perform best, followed by
off-the-shelf embeddings from OpenAI, and
then off-the-shelf Sentence Transformer mod-
els (though there is some variation from task
to task). The results are consistent with the
discussion of off-the-shelf versus customized
embedding models above.
LinkTransformer also provides APIs to

use transformer large language models for
other data processing tasks, e.g., classifi-
cation, aggregation, and de-duplication, as
outlined in tutorial notebooks linked on
EconDL. Users can also find a ‘Train Your
Own LinkTransformer Model’ tutorial, for
when customization is necessary. Contrastive
training requires both positive and negative
pairs (in this case, linked records and dis-

tinct records). The user can provide only
positives—in which case LinkTransformer

chooses negatives at random—or can provide
both positives and negatives, if hard negatives
are available. To promote reusability, repro-
ducibility, and extensibility, models can be
shared to the Hugging Face hub with a single
line of code.

When the task is to link scanned docu-
ments (as in much of economic history), com-
puter vision may also be useful. In the vi-
sion only record linkage models developed in
Arora et al. (2023), record linkage is OCR-
free, using only the image crops of the firm
names to be linked. This is explored in a chal-
lenging setting, linking firms between histori-
cal Japanese publications where one publica-
tion is written horizontally and the other ver-
tically. In general, vision-only linkage leads
to reasonably high accuracy. However, there
are some matches that a vision model cannot
resolve because a firm can write its name in
different ways.

Embedding models can combine vision and
language transformers, leveraging an under-
standing of both semantic and visual similar-
ity. Arora et al. (2023) show that a multi-
modal model leads to extremely accurate link-
age of OCR’ed Japanese firm-level records on
customers and suppliers, whereas less accurate
string distance metrics produce a different sup-
ply chain network that would likely lead to bi-
ased downstream economic analyses.

Combining text and image embeddings is
most straightforward when the embedding
spaces are aligned. In other words, image and
text representations of the same thing need to
have similar embeddings; e.g., a picture of an
avocado and the text ’avocado’ have similar
embeddings when an image and text encoder
respectively map them to vector space. Arora
et al. (2023) start with a Japanese version of
CLIP, which stands for Contrastive Language-
Image Pre-training. CLIP is an OpenAI model
contrastively trained to align text and im-
age encoders using 400 million image-caption
pairs scraped from the web (Radford et al.,
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2021). Arora et al. (2023) do further pre-
training on synthetically noised pairs of doc-
ument crops and their corresponding OCR’ed
texts. Pooled text-image representations are
then used to link firms.

There are other ways to incorporate visual
similarity into linkage that may be helpful
when OCR errors are present. Approximate
string matching methods count the number
of edits (insertions, deletions, and substitu-
tions) needed to transform one string into an-
other (Levenshtein et al., 1966). In practice,
not all string substitutions are equally prob-
able, and efforts to construct lists that vary
their costs date back at least to 1918, when
Russell and Odell patented Soundex (Russell,
1918; Archives and Administration, 2023), a
sound standardization toolkit that accounts for
the fact that census enumerators often mis-
spelled names according to their sound. Such
methods can significantly improve the accu-
racy of edit distance linking in the contexts for
which they are tailored but are labor-intensive
to extend to new settings due to the use of
hand-crafted features. This skews research
with linked data—necessary to examine many
economic questions—towards higher resource
settings that are not representative of the diver-
sity of human societies.

Yang et al. (2023) develop an extensi-
ble, self-supervised method for determining
the relative costs of character substitutions in
databases created with OCR. OCR often con-
fuses characters with their homoglyphs, which
have a similar visual appearance (e.g., ’0’
and ’O’). Yang et al. (2023) augment digi-
tal fonts to contrastively learn a metric space
where different augmentations of a character
(e.g., the same character rendered with differ-
ent fonts) have similar vector representations.
The resulting space can be used, with a ref-
erence font, to measure the visual similarity
across different characters. Examples of char-
acters and their nearest neighbors in homo-
glyph space are shown in Figure 9.

Using the cosine distance between charac-
ters in the homoglyph space as the substitution

FIGURE 9. CHARACTER SIMILARITY, AS MEA-
SURED BY VISION TRANSFORMERS.

cost within a Levenshtein edit distance frame-
work (Levenshtein et al., 1966) significantly
improves linkage of firms and placenames.
The study focuses on CJK, as the extremely
large number of characters in this script make
it completely infeasible to compute homo-
glyphs by hand, but shows that the method is
extensible by computing homoglyphs for an-
cient Chinese characters and for all of Uni-
code. The broader takeaway is even when
traditional methods—like string distance—are
preferred, deep learning may provide a way to
cheaply extend the methods to novel settings.

3. Linking unstructured data

There is also a large NLP literature on link-
ing entities mentioned in unstructured texts
(e.g., news, social media, etc.), a task referred
to as entity disambiguation. Linking entity
mentions in raw texts (tagged through NER -
Section VII.4) to Wikipedia or other knowl-
edge bases is useful, because these contain in-
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formation such as structured biographical data.
Whether individuals are in an external knowl-
edge base may itself also be of interest.

Researchers might also wish to coreference
entity mentions across documents in a corpus
(e.g., find every reference to President John F.
Kennedy in historical news). This is referred
to as coreference resolution.

Despite increasing digitization, histori-
cal documents typically lack cross-document
identifiers for individuals mentioned in the
texts, as well as identifiers from exter-
nal knowledge bases like Wikipedia, both
of which would make it much easier for
economists to extract structured data from
these sources.

Arora et al. (2024) develop a bi-encoder
embedding model for coreferencing enti-
ties within texts and disambiguating them
to Wikipedia. The model is contrastively
trained on over 190 million entity pairs from
Wikipedia. Positive pairs come from contexts
(paragraphs) in Wikipedia that contain hyper-
links to the same page (for coreference), or
from a context and the first paragraph of the
relevant entity that it links to (for disambigua-
tion). Hard negatives are mined at scale from
Wikipedia disambiguation pages, which list
entities that have confusable names or aliases.
For example, the disambiguation page ”John
Kennedy” includes John F. Kennedy the pres-
ident, John Kennedy (Louisiana politician),
John F. Kennedy Jr, and a variety of other John
Kennedys. Hard negatives sample contexts
mentioning John F. Kennedy (e.g., with hyper-
links to John F. Kennedy’s page) and pair them
with contexts mentioning other entities from
the John Kennedy disambiguation page. Hard
negatives from families (e.g., Henry Ford Jr.
and Sr.) are over-represented by mining fam-
ily members from Wikidata. It was also neces-
sary to include random negatives, as otherwise
the model lost its initial ability to distinguish
easy cases, a phenomenon known in the deep
learning literature as catastrophic forgetting.

This illustrates how existing knowledge
can be mined to create informative nega-

tives for contrastive training. More generally,
Wikipedia is a useful source of training data
(e.g., firm aliases to train LinkTransformer

models were also taken from Wikidata).
Entity mentions are disambiguated by em-

bedding their contexts with the disambiguation
model and retrieving their nearest Wikipedia
neighbor in embedding space. If they are be-
low a threshold cosine similarity to the nearest
Wikipedia embedding, they are marked as not
in the knowledge base. Silcock et al. (2024)
find that the most mentioned entity in these
100 years is Dwight Eisenhower—edging
out Adolf Hitler, Richard Nixon, and Harry
Truman—and only 4.7% of disambiguated en-
tities in newswire articles are women.

4. Classification when categories are un-
known

The classes that a researcher would like to
impute from unstructured data may be un-
known ex ante. This is particularly likely when
the aim is to describe the stylized facts in a
novel unstructured corpus, but can arise more
generally. This section provides several exam-
ples drawn from media economics: detecting
reproduced article texts and images, classify-
ing the biggest news stories historically, and
retrieving historical news stories that are se-
mantically similar to modern ones.

Reproduced content is a fundamental fea-
ture of media—both traditional media and in
the age of sharing via social media. Media
historian Julia Guarneri (2017) writes: “by
the 1910s and 1920s, most of the articles that
Americans read in their local papers had either
been bought or sold on the national news mar-
ket... This constructed a broadly understood
American ‘way of life’ that would become a
touchstone of U.S. domestic politics and in-
ternational relations throughout the twentieth
century.” Suppose we would like to be able
to identify each unique article and image that
was sent out over the newswire, measure how
widely reproduced it was, and observe which
papers reproduced it. This problem is more
challenging than it seems. Texts are often
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heavily abridged and can contain significant
OCR errors. Images are often cropped, and the
quality can be extremely low.

Silcock et al. (2023) show that deep neu-
ral methods can significantly outperform non-
neural methods for detecting noisily du-
plicated texts, with applications to histor-
ical newswires, modern news, and patent
databases. Training and evaluation data
are hand-curated by grouping articles across
thousands of digitized local newspapers into
groups of articles from the same newswire
source. Articles from the same wire source are
positives. Articles with high n-gram overlap
but from different sources—often similar arti-
cles from different newswire services or article
updates—form hard negatives. Random nega-
tives are also used in training.

A bi-encoder embedding model is con-
trastively trained such that articles from the
same wire article source (regardless of noise
and abridgement) have similar vector rep-
resentations, while articles from different
sources (even if about the same underlying
story) have different representations. These
representations can then be clustered with
highly efficient single-linkage clustering to
quantify which articles are from the same un-
derlying news wire or syndicate article source
and which are from different ones. Com-
munity detection is used to break the spu-
rious links that are a potential drawback of
single-linkage clustering.5 As with record
linkage, the Sentence-BERT library (Reimers
and Gurevych, 2019) was an important re-
source. The model is initialized with the S-
BERT MPNet bi-encoder, a lightweight, high-
performing semantic similarity model.

The neural approach outperforms traditional
N-gram and hashing methods - sparse methods
that rely on term overlap to detect noisy dupli-
cates - by a wide margin. As suggested in Sec-
tion VII.5, modest gains result from adding a
re-ranking step that applies a cross-encoder to

5Other common clustering methods, like hierarchical ag-
glomerative clustering, do not scale well.

articles within a threshold bi-encoder distance.
A strength of embedding methods is their

scalability. Clustering dense vector repre-
sentations requires highly optimized similar-
ity search, as traditional clustering libraries
don’t scale well. Facebook AI Similarity
Search (FAISS) (Johnson, Douze and Jégou,
2019), an open-source library for computing
vector similarity, made 1014 exact similarity
comparisons—required to cluster 10 million
article representations—on a single GPU card
in around 3 hours. This could have been sped
up significantly, with only a modest hit to ac-
curacy, by using approximate vector search
(with appropriately tuned hyperparameters).

Silcock et al. (2024) release 2.7 million
unique newswire articles spanning 1878-1977
(the end date is due to copyright law changes).
It includes topic tags, named entity tags, dis-
ambiguation of individuals to Wikipedia, and
the counties where articles ran.

Detecting the noisy reproduction of images
is analogous to detecting reproduced texts.
Rather than training a language model, a vi-
sion model can be contrastively trained to map
reproduced versions of the same image to sim-
ilar vector representations and different images
to dissimilar representations. A lightweight
CNN works well in practice (Howard et al.,
2019), with little gain from using a much
larger ViT. Training data consist mostly of syn-
thetically augmented images—which simulate
the noise present in the actual images. When it
is possible to simulate realistic synthetic data,
this can save considerable annotation expense,
though adding a modest number of labeled ex-
amples from target data may still offer a per-
formance boost.

Embedding models are well-suited to as-
sessing stylized facts in unstructured data at
scale. Deep learning makes it possible to use
a variety of novel unstructured datasets in eco-
nomic research. While our focus is often on
using causal estimation to test precisely de-
fined hypotheses, understanding stylized facts
is an important first step to formulating these
hypotheses.
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Year Biggest story
1885 Death of General Grant
1886 Southwest Railroad Strike
1887 Vatican supports Knights of Labor
1888 Rail strikes
1889 Samoan Crisis
1890 1893 World’s Fair planning
1891 New Orleans Lynchings
1892 Homestead Steel Strike
1893 World’s Fair, Chicago
1894 Wilson–Gorman Tariff Act
1895 British occupation of Nicaragua
1896 Bimetallism Movement
1897 Coal Miners’ Strike
1898 Cuban War of Independence
1899 Philippine-American War
1900 Anglo-Boer War
1901 U.S. Steel Recognition Strike
1902 Anthracite Coal Strike
1903 Panama Canal Treaty
1904 Russo-Japanese War
1905 Russo-Japanese Peace Process
1906 Hepburn Railroad Rate Bill
1907 Mining accidents
1908 Taft presidential victory
1909 Race to the North Pole
1910 Rail strikes
1911 Canadian Reciprocity Bill
1912 Republican National Convention
1913 Underwood-Simmons Tariff Act
1914 World War I
1915 World War I
1916 Pancho Villa Expedition
1917 World War I
1918 World War I
1919 Treaty of Versailles
1920 Rail strikes

TABLE 3—BIGGEST NEWS STORIES.

Consider an application from Dell et al.
(2023), which constructs a historical newspa-
per dataset consisting of over 430 million his-
torical U.S. newspaper articles. The aim of the
exercise is to determine the biggest news sto-
ries of each year without knowing what these

stories are ex ante. The study contrastively
trains a model on data from AllSides, a modern
news website that groups news articles from
different sources into stories (often with differ-
ent perspectives on the same event).6 Grouped
stories form positive pairs for training, with
the model learning what constitutes the “same
story” via these empirical examples. The
trained model is used to embed articles, and
stories are formed by clustering. Table 3 re-
ports the largest cluster for each year (Dell
et al., 2023). Some interesting stylized facts
emerge, particularly the extensive coverage of
labor movements. If a researcher wanted to
create a measure of labor movements to use in
a causal estimating equation, they would likely
train a classifier with carefully crafted labels
to predict which articles are about labor move-
ments. In contrast, this exercise motivates why
labor movements are important to study in the
first place.

Franklin et al. (2024) use this model for
additional data exploration, first masking out
all named entities (people, organizations, loca-
tions, and other miscellaneous proper nouns)
and then querying the most similar historical
news articles to a modern news article query
in embedding space. The resulting News Déjà

Vu open-source package and website provide a
novel tool for exploring parallels in how peo-
ple have perceived past and present.

5. Optical character recognition

Optical character recognition (OCR) is an
important task for economists, particularly
for economic historians. Documents are ex-
tremely diverse in terms of character sets, lan-
guages, fonts or handwriting, printing tech-
nologies, and artifacts from scanning and ag-
ing. Off-the-shelf OCR technology is devel-
oped largely for small-scale commercial ap-
plications in high-resource languages like En-
glish, and the architecture it uses is not well-
suited to extending OCR to lower-resource

6https://www.allsides.com/
unbiased-balanced-news

https://www.allsides.com/unbiased-balanced-news
https://www.allsides.com/unbiased-balanced-news
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languages and settings, as elaborated in Sec-
tion X. OCR quality can deteriorate rapidly
when moving away from English and a
few other high-resource languages (Carlson,
Bryan and Dell, 2024; Hegghammer, 2021).
For example, on printed Japanese documents
from the 1950s, the best-performing existing
OCR mis-predicts over half of the charac-
ters. Poor performance is widespread, spurring
a large post-OCR error-correction literature
(Lyu et al., 2021; Nguyen et al., 2021; van
Strien. et al., 2020).

Even in the highest resource settings, off-
the-shelf solutions can still fail, especially
when accuracy is paramount. This is partic-
ularly true when transcribing quantitative data.
An OCR error in prose is often straightforward
to correct in post-processing or inconsequen-
tial. However, with numbers, a similar error
(e.g., hallucinating a “1” at the beginning of a
number) may severely bias downstream statis-
tical analyses.

Moreover, the scale of document collec-
tions to be digitized can be vast. For exam-
ple, the U.S. National Archives holds approx-
imately 13.28 billion pages of textual records.
Bringing big data to economic history requires
an OCR technology that is both accurate and
cheap to deploy.

If economists, historians, and others rely
solely on off-the-shelf commercial technolo-
gies, we will end up focusing on economic
applications that look a lot like high resource
commercial applications (e.g., receipts in En-
glish). This is indeed what I’ve seen over many
years of working with students: they are far
more likely to abandon projects in lower re-
source languages because the OCR quality of
any existing off-the-shelf solution is poor. This
skews economic knowledge towards settings
that look more like high-resource commercial
applications, which are not representative of
the diversity of human societies.

To address these challenges, Carlson, Bryan
and Dell (2024) develop a novel, open-source
OCR architecture, EffOCR (EfficientOCR).
EffOCR is designed for researchers and

archives seeking a sample-efficient, customiz-
able, scalable OCR solution for diverse docu-
ments. Deep learning-based object detection
methods (Section IX) are used to localize in-
dividual characters or words in a document
image. Recognition models for characters
or words are contrastively trained—largely on
augmented digital fonts—to map image crops
of the same character or word to similar vector
representations, regardless of font and other
variations. Different characters or words, even
if they have a very similar visual appearance,
are mapped further apart.

A document is transcribed by embedding
word or character crops and retrieving their
nearest neighbors in an index that embeds
crops rendered with a digital font. New char-
acters or words can be added to the index af-
ter training (unlike with a classifier), a useful
feature for economic historians since idiosyn-
cratic symbols frequently appear in historical
document collections.
EffOCR performs very accurately, even

when using lightweight models designed for
mobile phones that are cheap to train and de-
ploy. For example, it can provide a sam-
ple efficient, highly accurate OCR architec-
ture for historical Japanese documents where
all current solutions fail. Its blend of ac-
curacy and efficient runtime also makes it
attractive for digitizing massive-scale collec-
tions in high-resource languages. Dell et al.
(2023) cheaply digitize over 430 million his-
torical newspaper articles from the Library
of Congress’s Chronicling America collection
with EffOCR. TrOCR, an open-source solution
with similar accuracy, would have cost nearly
50 times more to deploy, and commercial so-
lutions were even more cost prohibitive.

EconDL links to a demo notebook for train-
ing a custom OCR for polytonic (ancient)
Greek, using minimal cloud compute. Carl-
son, Bryan and Dell (2024) show that this
model outperforms Google Cloud Vision on
the target data. The notebook uses the EffOCR

package (Bryan et al., 2023), which allows
users to tune their own OCR models and run
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FIGURE 10. LAYOUTS FROM HISTORICAL NEWSPAPERS.

existing models off-the-shelf. EffOCR does not
focus on handwriting; however, the approach
would be analogous. Synthetic handwriting
generators, e.g., Bhunia et al. (2021), could
provide extensive data for pre-training, anal-
ogous to the use of digital fonts.

IX. Regression

In machine learning, the term “regression”
refers to the prediction of continuous out-
comes. Regression using deep neural networks
is analogous to classification, except that a re-
gression layer added to a neural network pre-
dicts a continuous number(s), rather than a set
of class scores. For this reason, our treatment
here is brief, focusing on a single application:
object detection.

Object detection problems, as the name sug-
gests, locate objects in an image (Ren et al.,
2017; He et al., 2017; Kirillov et al., 2019;
Cai and Vasconcelos, 2019; Redmon et al.,
2016; Ultralytics, 2020; Carion et al., 2020;
Liu et al., 2021). For example, an economist
digitizing firm financial records would need to
detect the coordinates of different document
objects: e.g., table headers, column and row
headers, table cells, footnotes, etc. Alterna-
tively, an economist wishing to measure infor-
mality from street view data would need to lo-
calize street vendors in an image. For each ob-
ject, the neural network outputs four continu-

ous numbers (top-x, top-y, height, and width
of the box containing the object)—a regres-
sion problem—as well as the class of that ob-
ject (e.g., table header, column header, etc.)—a
classification problem.

Figure 10 shows how object detection meth-
ods can be used to localize and classify doc-
ument layout objects (e.g., articles, headlines,
etc.) in scans of historical newspapers, facil-
itating the creation of structured digital texts
that can be analyzed with modern NLP meth-
ods. In contrast, Figure 11 provides an exam-
ple of how commercial OCR (Google Cloud
Vision) reads a newspaper scan like a single
column book, failing to detect individual ar-
ticles, headlines, etc. All one can do with
these scrambled texts is search for keywords,
as is typical in the economic literature using
historical newspapers (see Hanlon and Beach
(2022) for a review). Layout detection is also
needed to extract structure when digitizing tab-
ular data, as Figure 12 shows for historical
Japanese firm records.

At present, document layout detection typi-
cally requires customization. An off-the-shelf
model may work well if the target task is quite
close to what it was fine-tuned for. However, in
computer vision, the main pre-training dataset
is ImageNet, which consists of natural images,
such as different breeds of dogs. Models have
not been exposed to massive-scale pre-training
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FIGURE 11. LAYOUTS AS DETECTED BY GOOGLE

CLOUD VISION.

on documents, and hence tend to suffer from
substantial domain shift when applied to dif-
ferent types of documents. This is particularly
true with historical documents, which are het-
erogeneous.

While there is a foundation model for ob-
ject localization, Segment Anything by Meta
AI (Kirillov et al., 2023), at the time of writing
I have not found it to be very useful for doc-
ument tasks. It can localize objects in an im-
age, but does not classify them into categories.
Moreover, localizations on document images
are not particularly accurate at present.

The open-source package Layout Parser

(Shen et al., 2021) lowers the barriers to de-
tecting document layouts with deep learning.
The library—which contains a model zoo for
off-the-shelf usage and facilitates tuning cus-
tomized models—is implemented with simple
Python APIs. More information can be found
on the EconDL resource page. The EconDL
knowledge base introduces active learning for

FIGURE 12. DOCUMENT LAYOUTS.

object detection (Shen et al., 2022), which
chooses instances to label that the model is
most uncertain about to economize on labeling
costs.

Space constraints preclude delving into the
architectures of object detection models, but a
detailed treatment is provided in the object de-
tection post in the EconDL knowledge base.
Resources for satellite images include e.g.,
Aleissaee et al. (2022); Wang et al. (2022);
Bandara and Patel (2022); Fuller, Millard and
Green (2022) and are linked from the page on
processing satellite imagery in EconDL.

X. Alternative methods

This review has focused on a set of methods
that—while a mainstay in deep learning—are
far from comprehensive. If the reader delves
into the deep learning literature, they will find
other approaches to the above problems and
may wonder why those were not covered. I
focus on classifiers and embedding models
because they are often sample and compu-
tationally efficient, meaning that they learn
well from limited data and can be cheaply de-
ployed on constrained hardware. They are
user-friendly to train and can attain state-of-
the-art performance on a variety of tasks.

This section provides a brief flavor of other
ways of approaching two applications, OCR
and entity disambiguation. It highlights how
problems can be conceptualized differently
and underscores some of the advantages of em-
bedding models for academic applications.



38 JOURNAL OF ECONOMIC LITERATURE MONTH YEAR

FIGURE 13. EFFOCR AND SEQ2SEQ MODEL ARCHITECTURES.

1. Optical Character Recognition

Section VIII.5 framed OCR as an im-
age retrieval problem, using a contrastively
trained vision model. This diverges from
the literature, which mostly models OCR as
a sequence-to-sequence (seq2seq) problem.
Seq2seq models transform one sequence of
data into another sequence. They are fre-
quently used when the input and output data
are sequences that may differ in length, such
as in machine translation.

Figure 13 highlights the differences be-
tween the EffOCR and seq2seq architectures
for OCR. First, seq2seq OCR typically re-
quires line-level inputs and does not localize
individual characters or words. Instead, it di-
vides text line images or their representations
into fixed-size patches. In contrast, EffOCR

uses modern object detection methods (Cai
and Vasconcelos, 2018; Jocher, 2020) to locate
characters or words in the input image.

Second, seq2seq decodes image
representations—created by a learned vi-
sion model—into text sequentially using a
learned language model. Conversely, EffOCR
employs contrastive training (Khosla et al.,
2020) to learn a meaningful metric space
for OCR. Its vision model projects crops of

the same character or word close together,
regardless of style, while projecting crops of
different characters or words to dissimilar
embeddings. With EffOCR, the vision em-
beddings alone are sufficient to infer text, by
retrieving their nearest neighbor from an index
created by embedding a digital font. In con-
trast, with seq2seq, the vision representations
are decoded into texts with a language model,
which requires jointly estimating millions of
additional parameters.

A drawback of the seq2seq architecture is
that it is challenging to extend and customize
to novel settings (Hedderich et al., 2021), be-
cause training a joint vision-language model
requires a vast collection of labeled image-
text pairs and significant compute, particularly
when state-of-the-art architectures are used.
TrOCR—a transformer seq2seq model created
by researchers at Microsoft—was trained us-
ing 684 million English synthetic text lines and
32 32GB V100 GPUs, a very costly setup that
no academic researcher can replicate.

This drawback can be quantified by sample
efficiency, which refers to how well a model
can perform following exposure to a limited
number of training examples. Some architec-
tures learn more efficiently than others. Bi-
encoders tend to learn efficiently, which is im-
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portant for economists because our compute
and annotation budgets are severely limited by
deep learning standards.

Figure 14, drawn from Carlson, Bryan and
Dell (2024), examines sample efficiency by
training various open-source OCR architec-
tures on the same small training sets. The x-
axis plots the percentage of the EffOCR train-
ing dataset used in training, and the y-axis
plots the character error rate.

FIGURE 14. SAMPLE EFFICIENCY.

On just 99 labeled table cells for Japanese
tables and 21 labeled rows from U.S. news-
papers in the Chronicling America collection,
as well as digital fonts (the 5% train splits),
EffOCR’s character error rate is around 4%,
showing viable few-shot performance. Other
architectures, trained on identical data, remain
unusable. EffOCR performs nearly as well us-
ing 20% of the training data as using 70%,
where it continues to outperform all other al-
ternatives. TrOCR learns almost nothing from
the amount of data we can expose it to (hence
why Microsoft trained it on 684 million text
lines). In contrast, EffOCR can be trained with
a student account in the cloud, or even on a
laptop. CRNN is a much lighter weight, older
seq2seq architecture, that learns better with
limited data but uses an LSTM rather than a
transformer, leading to an accuracy hit when
fully trained.

Embedding models can also offer a com-
putational advantage over seq2seq mod-

els. EffOCR supports inference paralleliza-
tion across characters, promoting faster infer-
ence, whereas seq2seq requires autoregressive
decoding, which is slower. EffOCR runs ap-
proximately 50 times faster than TrOCR, the
only open-source model comparable in accu-
racy once fully trained. We created the open-
source American Stories dataset consisting of
over 430 million historical news articles with
a $60,000 budget using EffOCR, and could not
have realistically generated any substantial ad-
ditional funds, let alone 50 times more funds.

A sample and compute efficient architecture
makes it possible to achieve high-quality tran-
scriptions in diverse settings and on massive-
scale document collections, bringing big data
to a diversity of economic history applications.
In theory, contextual understanding from the
full sequence of representations could lead to
better OCR. In practice, state-of-the-art trans-
former seq2seq models are expensive to train
and deploy, and are not available for lower-
resource languages, with advances mainly in a
few languages. By moving away from seq2seq
models, significant improvements in sample
and computational efficiency can be achieved.
In an academic setting, such advantages are
particularly relevant, as our applications are
highly diverse and our budgets are usually ex-
tremely constrained.

2. Entity Disambiguation

Entity disambiguation—linking entity men-
tions in unstructured texts to an external
knowledgebase like Wikipedia—has led to the
development of various architectures. These
include a masked language model (LUKE, Ya-
mada et al. (2022)) and a neural translation
model (GENRE, De Cao et al. (2020))—which
uses a sequence-to-sequence architecture to
translate mentions into Wikipedia ids—as well
as the bi-encoder embedding architecture that
treats entity disambiguation as a nearest neigh-
bor retrieval problem (Wu et al., 2019). The
latter architecture is used by this article’s ap-
plication (Section VIII.3).

The masked language model approach
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masks out entities and predicts their Wikipedia
id using a classifier head. While it is the leader
on some benchmarks, in practice it has major
limitations. Language models predict masked
tokens through classification. LUKE is re-
stricted to the top 50K Wikipedia entries, due
to computational constraints in calculating the
softmax. Many of the top-50K entries are not
people, and many people that appear in his-
torical news or government documents are not
amongst the top-50K. Additionally, it does not
accommodate out-of-knowledge base entities
and requires sparse entity priors to initialize
the model. In many applications, not all in-
dividuals will be in a knowledge base, and the
model needs to be able to predict this.

The neural translation model’s sequence-
to-sequence architecture is slow during infer-
ence, taking approximately 60 times longer
to run than bi-encoder embedding models.
Arora et al. (2024) also show that an embed-
ding model achieves higher accuracy disam-
biguating historical texts. In short, again a
sequence-to-sequence architecture is costly to
run at scale and doesn’t necessarily offer per-
formance advantages.

XI. Conclusion

Deep learning provides powerful tools for
processing unstructured data. On social sci-
ence tasks ranging from text classification
to record linkage, entity disambiguation, and
tracing the spread of reproduced content, deep
learning can outperform traditional sparse
methods by a wide margin (often by 20 points
of F1/accuracy or more) (Silcock et al., 2023;
Dell et al., 2023; Arora and Dell, 2024; Arora
et al., 2023, 2024).

Deep learning can facilitate novel analyses
by providing tools to impute structured in-
formation from unstructured data on a mas-
sive scale. When working with lightweight,
sample-efficient pre-trained models, training
and deployment are quite affordable, even for
datasets with millions or billions of observa-
tions. For some applications, deep learning
also offers promise for processing data from

low-resource settings, with the potential to
make economic research more representative
of the diversity of human societies.

Becoming familiar with deep learning meth-
ods entails significant startup costs. This
article—along with the accompanying open-
source packages, tutorials, and knowledge
base—aims to significantly reduce entry barri-
ers for economists who would like to use deep
learning in their research.

REFERENCES

Abramitzky, Ran, Leah Boustan, Katherine
Eriksson, James Feigenbaum, and Santi-
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Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih.
2020. “Dense passage retrieval for open-
domain question answering.” arXiv preprint
arXiv:2004.04906.

Khattab, Omar, Keshav Santhanam, Xi-
ang Lisa Li, David Hall, Percy Liang,
Christopher Potts, and Matei Zaharia.
2022. “Demonstrate-Search-Predict: Com-
posing Retrieval and Language Models for
Knowledge-Intensive NLP.” arXiv preprint
arXiv:2212.14024.

Khosla, Prannay, Piotr Teterwak, Chen
Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce
Liu, and Dilip Krishnan. 2020. “Super-
vised contrastive learning.” Advances in
Neural Information Processing Systems,
33: 18661–18673.

Kingma, Diederik P, and Jimmy Ba. 2014.
“Adam: A method for stochastic optimiza-
tion.” arXiv preprint arXiv:1412.6980.

Kirillov, Alexander, Eric Mintun, Nikhila
Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo,
et al. 2023. “Segment anything.” arXiv
preprint arXiv:2304.02643.

Kirillov, Alexander, Ross Girshick, Kaim-
ing He, and Piotr Dollár. 2019. “Panoptic
feature pyramid networks.” 6399–6408.



VOL. VOLUME NO. ISSUE DEEP LEARNING FOR ECONOMISTS 45

Korinek, Anton. 2023. “Generative AI for
Economic Research: Use Cases and Im-
plications for Economists.” Journal of Eco-
nomic Literature, 61(4): 1281–1317.

Krizhevsky, Alex, Ilya Sutskever, and Ge-
offrey E Hinton. 2012. “ImageNet Classifi-
cation with Deep Convolutional Neural Net-
works.” Vol. 25. Curran Associates, Inc.

Lan, Zhenzhong, Mingda Chen, Sebas-
tian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. “Al-
bert: A lite bert for self-supervised learning
of language representations.” arXiv preprint
arXiv:1909.11942.

LeCun, Yann, Yoshua Bengio, and Geof-
frey Hinton. 2015. “Deep learning.” Na-
ture, 521(7553): 436–444.

Lei, Lihua, and Emmanuel J. Candès. 2020.
“Conformal Inference of Counterfactuals
and Individual Treatment Effects.” arXiv
preprint arXiv:2006.06138.

Levenshtein, Vladimir I, et al. 1966. “Binary
codes capable of correcting deletions, inser-
tions, and reversals.” Vol. 10, 707–710, So-
viet Union.

Li, Lisha, Kevin Jamieson, Giulia DeSalvo,
Afshin Rostamizadeh, and Ameet Tal-
walkar. 2017. “Hyperband: A novel bandit-
based approach to hyperparameter opti-
mization.” The Journal of Machine Learn-
ing Research, 18(1): 6765–6816.

Liu, Pengfei, Weizhe Yuan, Jinlan Fu,
Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. “Pre-train, prompt,
and predict: A systematic survey of prompt-
ing methods in natural language process-
ing.” ACM Computing Surveys, 55(9): 1–35.

Liu, Yinhan, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. 2019.
“Roberta: A robustly optimized bert

pretraining approach.” arXiv preprint
arXiv:1907.11692.

Liu, Ze, Yutong Lin, Yue Cao, Han Hu, Yix-
uan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. 2021. “Swin transformer: Hi-
erarchical vision transformer using shifted
windows.” 10012–10022.

Liu, Zhuang, Hanzi Mao, Chao-Yuan Wu,
Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022. “A convnet for the
2020s.” 11976–11986.

Lynn, Veronica, Jonathan K. Kummer-
feld, and Rada Mihalcea. 2020. “A Causal
Framework for Uncovering the Effects of
Descriptive Text on Decision Making.”
5276–5294.

Lyu, Lijun, Maria Koutraki, Martin Krickl,
and Besnik Fetahu. 2021. “Neural OCR
Post-Hoc Correction of Historical Corpora.”
Transactions of the Association for Compu-
tational Linguistics, 9: 479–483.

Mehrabi, Ninareh, Fred Morstatter, Nrip-
suta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. “A Survey on Bias and
Fairness in Machine Learning.” ACM Com-
puting Surveys (CSUR), 54(6): 1–35.

Mehta, Sachin, and Mohammad Rastegari.
2021. “MobileViT: Light-weight, General-
purpose, and Mobile-friendly Vision Trans-
former.” arXiv preprint arXiv:2110.02178.

Merchant, Amil, Elahe Rahimtoroghi, El-
lie Pavlick, and Ian Tenney. 2020. “What
Happens to BERT Embeddings during Fine-
tuning?” arXiv preprint arXiv:2004.14448.

Mikolov, Tomas, Ilya Sutskever, Kai Chen,
Greg S Corrado, and Jeff Dean. 2013.
“Distributed representations of words and
phrases and their compositionality.” Ad-
vances in Neural Information Processing
Systems, 26: 3111–3119.



46 JOURNAL OF ECONOMIC LITERATURE MONTH YEAR

Mitchell, Margaret, Simone Wu, Andrew
Zaldivar, Parker Barnes, Lucy Vasser-
man, Ben Hutchinson, Elena Spitzer, In-
ioluwa Deborah Raji, and Timnit Gebru.
2019. “Model Cards for Model Reporting.”
220–229.

MLCommons. 2024. “Croissant: A Meta-
data Framework for ML-Ready Datasets.”
https: // github. com/ mlcommons/

croissant , Accessed: 2024-07-09.

Nguyen, Dat Quoc, Thanh Vu, Afshin
Rahimi, Mai Hoang Dao, Linh The
Nguyen, and Long Doan. 2020. “WNUT-
2020 task 2: identification of informative
COVID-19 english tweets.” arXiv preprint
arXiv:2010.08232.

Nguyen, Thi Tuyet Hai, Adam Jatowt,
Mickael Coustaty, and Antoine Doucet.
2021. “Survey of Post-OCR Processing Ap-
proaches.” ACM Comput. Surv., 54(6).

Nielsen, Michael A. 2015. Neural Networks
and Deep learning. Vol. 25, Determination
press San Francisco, CA, USA.

Olah, Christopher. 2014. “Deep learning,
NLP, and Representations.” GitHub blog,
posted on July.

Oord, Aaron van den, Yazhe Li, and Oriol
Vinyals. 2018. “Representation learning
with contrastive predictive coding.” arXiv
preprint arXiv:1807.03748.

Pennington, Jeffrey, Richard Socher, and
Christopher D Manning. 2014. “Glove:
Global vectors for word representation.”
1532–1543.

Radford, Alec, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. “Language
models are unsupervised multitask learn-
ers.” OpenAI blog, 1(8): 9.

Radford, Alec, Jong Wook Kim, Chris Hal-
lacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda

Askell, Pamela Mishkin, Jack Clark,
et al. 2021. “Learning transferable visual
models from natural language supervision.”
8748–8763, PMLR.

Raffel, Colin, Noam Shazeer, Adam
Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li,
and Peter J. Liu. 2019. “Exploring the
Limits of Transfer Learning with a Unified
Text-to-Text Transformer.” arXiv e-prints.

Raffel, Colin, Noam Shazeer, Adam
Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li,
and Peter J Liu. 2020. “Exploring the
limits of transfer learning with a unified
text-to-text transformer.” The Journal of
Machine Learning Research, 21(1): 5485–
5551.

Redmon, Joseph, Santosh Divvala, Ross
Girshick, and Ali Farhadi. 2016. “You
only look once: Unified, real-time object de-
tection.” 779–788.

Reimers, Nils, and Iryna Gurevych. 2019.
“Sentence-bert: Sentence embeddings us-
ing siamese bert-networks.” arXiv preprint
arXiv:1908.10084.

Ren, Shaoqing, Kaiming He, Ross Girshick,
and Jian Sun. 2017. “Faster R-CNN: To-
wards Real-Time Object Detection with Re-
gion Proposal Networks.” IEEE transac-
tions on pattern analysis and machine intel-
ligence, 39(6): 1137–1149.

Robins, James M., Andrea Rotnitzky, and
Lue Ping Zhao. 1994. “Estimation of re-
gression coefficients when some regres-
sors are not always observed.” Journal
of the American Statistical Association,
89(427): 846–866.

Rush, Alexander M. 2018. “The annotated
transformer.” 52–60.

Russell, Robert C. 1918. “U.S. Patent No.
US1261167A.” U.S. Patent and Trade-

https://github.com/mlcommons/croissant
https://github.com/mlcommons/croissant


VOL. VOLUME NO. ISSUE DEEP LEARNING FOR ECONOMISTS 47

mark Office, https://patents.google.

com/patent/US1261167A/en.

Sanderson, Grant. 2017. “Neural Net-
works.” https://www.3blue1brown.com/

topics/neural-networks.

Sanderson, Grant. 2020. “Convolutions
in Image Processing.” https://www.

youtube.com/watch?v=8rrHTtUzyZA.

Sang, Erik F, and Fien De Meulder. 2003.
“Introduction to the CoNLL-2003 shared
task: Language-independent named entity
recognition.” arXiv preprint cs/0306050.

Sanh, Victor, Lysandre Debut, Julien Chau-
mond, and Thomas Wolf. 2019a. “Distil-
BERT, a distilled version of BERT: smaller,
faster, cheaper and lighter.” arXiv preprint
arXiv:1910.01108.

Sanh, Victor, Lysandre Debut, Julien
Chaumond, and Thomas Wolf. 2019b.
“DistilRoBERTa: A distilled version of
RoBERTa.” https: // github. com/

huggingface/ transformers , Accessed:
2024-07-09.

Santurkar, Shibani, Dimitris Tsipras, An-
drew Ilyas, and Aleksander Madry. 2018.
“How does batch normalization help opti-
mization?” Advances in Neural Information
Processing Systems, 31.

Shafer, Glenn, and Vladimir Vovk. 2008. “A
Tutorial on Conformal Prediction.” Journal
of Machine Learning Research, 9: 371–421.

Shen, Qinlan, and Carolyn Rose. 2021.
“What Sounds “Right” to Me? Experiential
Factors in the Perception of Political Ideol-
ogy.” 1762–1771, Association for Computa-
tional Linguistics.

Shen, Zejiang, Jian Zhao, Yaoliang Yu,
Weining Li, and Melissa Dell. 2022.
“Olala: object-level active learning based
layout annotation.” EMNLP Computational
Social Science Workshop.

Shen, Zejiang, Ruochen Zhang, Melissa
Dell, Benjamin Charles Germain Lee, Ja-
cob Carlson, and Weining Li. 2021. “Lay-
outParser: A unified toolkit for deep learn-
ing based document image analysis.” 131–
146, Springer.

Silcock, Emily, Abhishek Arora, Luca
D’Amico-Wong, and Melissa Dell. 2024.
“Newswire: A Large-Scale Structured
Database of a Century of Historical News.”
arXiv preprint arXiv:2406.09490.

Silcock, Emily, Luca D’Amico-Wong,
Jinglin Yang, and Melissa Dell. 2023.
“Noise-Robust De-Duplication at Scale.”
Vol. 332.

Simonyan, Karen, and Andrew Zisserman.
2014. “Very deep convolutional networks
for large-scale image recognition.” arXiv
preprint arXiv:1409.1556.

Stevens, Eli, Luca Antiga, and Thomas
Viehmann. 2020. Deep learning with Py-
Torch. Manning Publications Company.

Szegedy, Christian, Wei Liu, Yangqing Jia,
Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. 2015.
“Going deeper with convolutions.” 1–9.

Touvron, Hugo, Matthieu Cord, Matthijs
Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021.
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TABLE 4—PROMPTS USED TO QUERY OPENAI GPT MODELS

Topic Prompt

advice We would like to classify whether a text is from an advice col-
umn. Advice columns answer letters from a reader seeking ad-
vice, or give unsolicited advice to readers. Examples include
Dear Abby, Ask Ann Landers, Dear Doctor, etc. Yes/No:

antitrust We would like to classify whether a text is about antitrust ac-
tion. An article that is about antitrust action covers business
practices that stifle competition, or accusations of such prac-
tices. It might involve legal action, government regulation, the
breaking up of monopolies, or any plans to do so. Yes/No:

bible We would like to classify whether a text reproduces a short re-
ligious blurb, like a quote from the Bible, prayer for the day,
spiritual thought for the day, without explanations, opinions, in-
terpretations, or discourses. Long sermons, discourse, or longer
texts quoting from the Bible won’t count as this ‘short religious
blurb.’ This will generally look like ‘X for the day’ - short and
crisp with no explanations or opinions at all besides the small
blurb. Yes/No:

civil rights movement We would like to classify whether a text is about the Civil
Rights movement. This includes articles referring to organiza-
tions and individuals that protested racism against Black Amer-
icans, and articles discussing racial discrimination in the gov-
ernment, social and educational inequality of African Ameri-
cans, police brutality against African Americans, the use of fed-
eral power to protect civil rights, or segregation. Articles about
protests and riots are on topic if they stemmed from conflicts
over civil rights or occurred after the death of Martin Luther
King Jr., but race riots and acts of violence involving African
Americans should not be on topic if they do not refer to dis-
crimination. Some articles may refer to states rights or express
anger about rioting—these articles are on topic only if race or
federal protection of civil rights is mentioned. Yes/No:

contraception We would like to classify whether a text is about contraception.
Abortion is not contraception. Yes/No:
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Topic Prompt

crime We would like to classify whether a text covers about crime. This
includes reports of crimes and investigations, coverage of court pro-
ceedings, law enforcement, and discussions of crime prevention and
community safety. Violations of international law are not consid-
ered crimes. Nor are actions that may be unethical but are not ille-
gal. Articles about Watergate should not be classified as about crime.
Yes/No:

horoscope We would like to classify whether a text is a newspaper horoscope.
Horoscopes are articles that make predictions about people’s futures
based on astrological signals or signs (sun signs for instance) and are
written to entertain and predict future events. They can be of daily
frequency, monthly or even yearly. They can also be making astro-
logical predictions for celebrities and known personalities. Yes/No:

labor movement We would like to classify whether a text covers any American labor
movements. A text that is on topic may cover unions striking, ad-
vocating for workers’ rights, lobbying the government, or speaking
about the experience of working in their industry. It may also cover
statements by employers that express anger at union action. Articles
that express support for or criticize the labor movement should both
count as on topic. Yes/No:

obituaries We would like to classify whether a text is an obituary. An obituary
is defined as an article which mentions a death of a person and pro-
vides their Biographical/Family information or Funeral information.
Articles which just mention deaths of individuals in passing and do
not summarize information about their life or their funeral services
are not obituaries. Yes/No:

pesticide We would like to classify whether an article is about pesticides.
Texts are on topic if they mention any chemical attempt to deter
pests (insects, other animals, or fungi) that were on a crop or plant.
This does not include herbicides, killing insects not on crops, non-
chemical bug killing, or anything else about insects. Yes/No:

polio vaccine We would like to classify whether a text is about the polio vaccine.
Yes/No:
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Topic Prompt

politics We would like to classify whether a text is a political news. Yes/No:

protests We would like to classify whether a text is about protests. Yes/No:

Red Scare We would like to classify whether a text is about the Red Scare or
McCarthyism. Any text that reports concerns about Communist in-
filtration into the U.S. government or institutions will be on topic. In
addition, any accusations of U.S. citizens display communist sympa-
thies will be on topic. References to the Korean War or the expansion
of Communism abroad are not on topic, though fears of espionage in
the U.S. by foreign Communists agents are on topic. Articles casting
doubt on the extent of Communist influences in the U.S. should also
be on topic. Yes/No:

schedules We would like to classify whether a text is a schedule. This includes
TV/Game/Movie/Church and other schedules. Schedules list multi-
ple events or programs on the same medium or by the same organi-
zation. They are generally lists of time stamps of events followed
by no (or a one line) description about them. A church calendar is a
schedule, but a summary of the Sunday service is not. Movie listings
are a schedule but a special screening of a particular movie is not.
Yes/No:

sports We would like you to classify whether a text is about sports. This
does not include fishing, hunting, or flying. Yes/No:
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Topic Prompt

Vietnam War We would like you to classify whether a text pertains to (any aspect
of) the Vietnam War. Yes/No:

weather We would like to classify texts that contain measurements about
the weather. These include the weather forecast as well as texts
summarizing what the weather was in the recent past (e.g., tem-
perature, precipitation, visibility). This also includes articles about
weather records, like the coldest/hottest days in a decade/year or
coldest/hottest places. If the article contains weather measurements
but also talks about the consequences of the weather in passing
(e.g., damage, events cancelled), we will call it about weather mea-
surements. However, if it just talks about the consequences of
the weather (e.g., closures, accidents, damage) without giving the
weather measurements, this does not count. As a rule of thumb, if
there is precise weather measurement somewhere in the article- call
it a weather measurement article. Yes/No:

World War I We would like to classify whether a text is about World War I.
Yes/No:


