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Introduction

Let's play Minecraft
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Introduction

Let's reproduce this image with blocks




Introduction

We start with big blocks
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A bit smaller blocks
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Even smaller blocks
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Now let's polish the edges
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Introduction

Our final result




Introduction

» Consider the function

y = f(r)
=2+ 327
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Introduction

6k
55 | » Consider the function
y = f(x)
— 2+ 322

» We observe y with error...
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» Consider the function

y = f(r)
=2+ 327

» We observe y with error...
. and only a sample
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» Consider the function

7Y S ® 9
e =24 3x
)
3r .
oo ® e » We observe y with error...

25

| i ] ® ¢ . and only a sample
i L » How can we recover the

N : » function from data?
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4.5

» Divide the domain of x
into K' = 5 regions
» Consider a locally constant

u

approximation
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» Divide the domain of x
into K' = 5 regions
» Consider a locally constant

o

approximation

» Approximation gets better
as the number of regions
grows
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| f » Divide the domain of x
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% /__ » Consider a locally constant
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Introduction

6k

55

» Divide the domain of x
into K' = 5 regions

» Consider a locally constant
approximation

» Approximation gets better
as the number of regions

grows
> K = 10,20, 100, ...
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Introduction

> In the previous slides, the function f(z) = 2 4+ 2*® was being
approximated by

K-1
hz) = By+ Y Billz > ¢p),
k=1

where
1 ifx>c
(x> ¢;) = -
0 otherwise
» ¢y, ..., cx are split points and Sy, ..., Bx_1 represent the local

approximation
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Introduction

» Can we do better than this?
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Introduction

» Can we do better than this?

» Yes, we can smooth the edges

Al
ceonoveTas s 13



Introduction

» Can we do better than this?

» Yes, we can smooth the edges

» Five regions with smooth edges

-
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Introduction

» The edges can be smoothed by replacing
1 ifz>g¢
0 otherwise

by a smooth function
» One possible choice is the logistic function
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Introduction

This is the idea behind Neural Networks
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Neural Networks

Mathematical definition

Deep Neural Networks

Convolutional Neural Networks

Long Short Term Neural Networks
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The Problem

» Observe the target variable Y and the inputs X = (X, ..., Xp)’

I||I|I I
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The Problem

» Observe the target variable Y and the inputs X = (X, ..., Xp)’

» Unknown mapping (relation) between Y and X:
Y=fX)+U,

where U is a random error - the relation setween ¥ and ¥ is not pertect

I||l|l I
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The Problem

» Observe the target variable Y and the inputs X = (X, ..., Xp)’

» Unknown mapping (relation) between Y and X:
Y=fX)+U,

where U is a random error - the relation setween ¥ and ¥ is not pertect

» From a random sample {Y;, X;};_;, we would like to learn
(estimate) f to predict Y from a new X

Y = f(X7)
L . I



The Neural Network Approach

» NN idea: Approximates the unknown f(-) by

J
H(X;0) = 3, + Zﬁjs(’Y;X +%.5)
j=1

where:

* X — ’y;X + 70,; is an affine transformation (linear combination plus a
shift) of the input vector X

i
cconoveTas s 18



The Neural Network Approach

» NN idea: Approximates the unknown f(-) by
J
H(X:;0) =5+ Zﬁjs(’Y;X + %.5);
j=1

where:

* X — '7;»X + 70,; is an affine transformation (linear combination plus a
shift) of the input vector X

* S : R — R is a basis function
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The Neural Network Approach

» NN idea: Approximates the unknown f(-) by
J
H(X:;0) =5+ Zﬁjs(’Y;X + %.5);
j=1

where:

* X — '7;»X + 70,; is an affine transformation (linear combination plus a
shift) of the input vector X

* S : R — R is a basis function

x 0 := (Lo, 81 Y1s Y5 Y015 -- - Y0.5) is the vector of parameters
that must be estimated

i
cconoveTas s 18



Some Neural Network Nomenclature

Jp
H(X:0) =8+ Y BiS(v;X +,)

j=1

» The basis functions S are called activation functions
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Some Neural Network Nomenclature

Jp
H(X:0) =8+ Y BiS(v;X +,)

j=1

» The basis functions S are called activation functions

» The parameters 6 are called weights
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Some Neural Network Nomenclature

Jr
H(X:0) =8+ Y BiS(v;X +,)
j=1

» The basis functions S are called activation functions
» The parameters 6 are called weights

» In particular, 5y and 7y ; are called bias ~~ Uncelsted <o the

statistical concept OFf Rias
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Some Neural Network Nomenclature

Jr
H(X:0) =8+ Y BiS(v;X +,)
j=1

» The basis functions S are called activation functions
» The parameters 6 are called weights

» In particular, 5y and 7y ; are called bias ~~ Uncelsted <o the

statistical concept OFf Rias

> Note that  ; shifts the whole S curve to the left and right
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Some Neural Network Nomenclature

Jr
H(X:0) =8+ Y BiS(v;X +,)
j=1

» The basis functions S are called activation functions
» The parameters 6 are called weights

» In particular, 5y and 7y ; are called bias ~~ Uncelsted <o the

statistical concept OFf Bias

> Note that  ; shifts the whole S curve to the left and right
» While y; controls for the “slope” of S
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Popular Choices for S

Logistic Hyperbolic tangent

B 1 _exp(X) — exp(—X)
)= 1+ exp(—X) S(X) = exp(X) + exp(—X)

S(X

0
rrrrrrrrrrrrrrrrrr

-10 -8 -6 4 6 8 10
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Logistic Activation Function




Logistic NN with 2 Inputs
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Activation Functions

» In general, but not always, S(-) is a squashing function.

Squashing function
A function S : R — [a,b], a < b, is a squashing (sigmoid) function if it is
non-decreasing, lim S(X)=band lim S(X)=a

X—00 X——00

I
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Activation Functions

» In general, but not always, S(-) is a squashing function.

Squashing function
A function S : R — [a,b], a < b, is a squashing (sigmoid) function if it is
non-decreasing, lim S(X)=band lim S(X)=a

X—00 X——00

» Some popular (old) squashing functions:
* Heaviside: S(X) = I(X >0)
* Logistic: S(X) = 1/[1 + exp(—X)]
* Hyperbolic tangent:
S(X) = [exp(X) — exp(—X)]/[exp(X) + exp(—X)]
+ Gaussian sigmoid: S(X) = (2m) /% [*_exp(—u?/2)du
i + Cosine squasher: S(X) = HEBVA1(1X| < 7/2) + [(X > 7/2)



Activation Function: Rectified Linear Units

S(X) :=ReLU(X) = max(0, X)

=
15

)
Lo B N W A O o N ® ©



Activation Function: Radial Basis

S(X) := RBF(X) = exp(—X?)

1 T T T

0.9
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Why NNs?

Universal Approximation Theorem

Feed-forward NN with a single hidden layer with “arbitrary” squashing functions
can approximate any Borel-measurable function from one finite dimensional space
to another to any desired degree of accuracy, provided sufficiently many (finite)

hidden units are available
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Why NNs?

Universal Approximation Theorem

Feed-forward NN with a single hidden layer with “arbitrary” squashing functions
can approximate any Borel-measurable function from one finite dimensional space
to another to any desired degree of accuracy, provided sufficiently many (finite)

hidden units are available

» How big is the class of Borel Measurable functions? It contains
all functions with at most countable discontinuities
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Why NNs?

Universal Approximation Theorem

Feed-forward NN with a single hidden layer with “arbitrary” squashing functions
can approximate any Borel-measurable function from one finite dimensional space
to another to any desired degree of accuracy, provided sufficiently many (finite)

hidden units are available

» How big is the class of Borel Measurable functions? It contains

all functions with at most countable discontinuities

» References:
* Cybenko (1989); Hornik, Stimchombe, and White (NN, 1989); Gallant

and White (1988); Gallant and White (NN, 1992); Hornik (NN, 1991);
and many others
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Why NNs?

Universal Approximation Theorem

Feed-forward NN with a single hidden layer with “arbitrary” squashing functions
can approximate any Borel-measurable function from one finite dimensional space
to another to any desired degree of accuracy, provided sufficiently many (finite)

hidden units are available

» How big is the class of Borel Measurable functions? It contains

all functions with at most countable discontinuities

» References:
* Cybenko (1989); Hornik, Stimchombe, and White (NN, 1989); Gallant

and White (1988); Gallant and White (NN, 1992); Hornik (NN, 1991);
and many others

an > The same NN can approximate the derivatives of the function
£ 26




NN as a Graph

Input Hidden Output
layer Iayer layer

Input #1 —
Input #2 —
— Output
Input #3 —
Input #4 —

» The input layer is just the vector of explanatory variables.
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NN as a Graph

Input Hidden Output
layer Iayer layer

Input #1 —
Input #2 —
— Output
Input #3 —
Input #4 —

» The input layer is just the vector of explanatory variables.
> The hidden layer consists of a set of hidden units (neurons)
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NN as a Graph

Input Hidden Output
layer Iayer layer

Input #1 —
Input #2 —
— Output
Input #3 —
Input #4 —

» The input layer is just the vector of explanatory variables.
> The hidden layer consists of a set of hidden units (neurons)
Jil > The output layer is the predicted value for the dependent variables

e T



NN as a Graph

Input Hidden
layer layer

Input #1 — 7

Input #2 —

Input #3 —

Input #4 —

> At each unit inputs are linearly combined: 'y;-X +%,j



NN as a Graph

Input Hidden
layer layer

Input #1 —
Input #2 —
Input #3 —

Input #4 —

> At each unit inputs are linearly combined: 'y;-X +%,j
» Nonlinear transformation in the hidden layer: S('Y;X +70,5)



NN as a Graph

Input Hidden Output
layer Iayer layer

Input #1 —
Input #2 —
— Output
Input #3 —
Input #4 —

> At each unit inputs are linearly combined: 'ij +%,j
» Nonlinear transformation in the hidden layer: S('Y;X +70,5)
il > Outputs of the hidden layer are linearly com%ned Bo + Z?:l @-S(’y}X +9.5) T
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Geometric Interpretation

m—p H={x, € Ry X, =10} |

Yo/IlYll

i
e 29 X




Geometric Interpretation

H={x, € R 1'% > 75} |

H={x, € R y’x, < Yo} |

i
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Geometric Interpretation

Xy Xy

AN

N AT

» J hyperplanes divide the space of covariates into several
polyhedral regions. The maximum number of regions is given by

M(J,p)=MJ—-1,p)+M(J—-1,p—1),

N where M(1,p) =2 and M(J,1) =J + 1.
dulh
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Geometric Interpretation

» In each region, the local model
IS a constant

» Smooth transition between
regions

» The number of regions and
the degree of smoothness
determine the quality of the
approximation

Al
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Geometric Interpretation




Agenda for Today

Deep Neural Networks



From Shallow to Deep: What is a Deep Neural Network?

» It is “just” a neural network with more than one hidden layer
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From Shallow to Deep: What is a Deep Neural Network?

» It is “just” a neural network with more than one hidden layer

» The layer might be fully connected or not
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From Shallow to Deep: What is a Deep Neural Network?

» It is “just” a neural network with more than one hidden layer
» The layer might be fully connected or not

» Different number of units in each hidden layer
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From Shallow to Deep: What is a Deep Neural Network?

» It is “just” a neural network with more than one hidden layer
» The layer might be fully connected or not
» Different number of units in each hidden layer

» Different activation function: rectified linear units (ReLU)

i
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What are the Potential Advantages Over Shallow NNs?

» |t has been very successful in many complex applications:
* Google Neural Machine Translation
* Lip reading
* Google Maps and Street View

i
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What are the Potential Advantages Over Shallow NNs?

» |t has been very successful in many complex applications:
* Google Neural Machine Translation
* Lip reading
* Google Maps and Street View

» Less hidden units per layer. “While the universal
approximation property holds both for
hierarchical and shallow networks, deep
networks can approximate the class of
compositional functions as well as shallow
networks but with exponentially lower
number of training parameters and sample

complexity.”
i Mhaskar, Liao and Poggio (2017) T
36



Graphical Representation of a (Shallow) NN

Input Hidden Output
layer layer layer

Input #1 —
Input #2 —
Input #3 —

Input #4 —




Graphical Representation of a Deep Neural Networks

Input st 2nd Output
P Hidden Hidden P
layer layer
layer layer

Input #1 —
Input #2 —

“(' .—> — Qutput
Input #3 —

Input #4 —



Agenda for Today

Convolutional Neural Networks
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Convolutional Neural Networks

» Convolutional Neural Networks (CNNs) are a class of Neural
Network models that have proven successful in image recognition
and classification.

» Multi-layer network consisting of different key elements:
* Convolutional layer (one or more)
* Nonlinear transformation
* Pooling (dimension reduction)

* Fully-connected (deep) feed-forward neural network

Al
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Convolutional Neural Networks

» Sequence of layers:

convolution + nonlinear transformation — pooling —
convolution + nonlinear transformation — pooling — --- —
convolution + nonlinear transformation — pooling —
Fully-connected (deep) NN



volutional Neural Networks

FULLY
6 (5 x 5) filters, 16 (5 x 5) filters,
aride= 1, mo (2x2) Maxpooling, ide-1ne (2% Moxpoolng, CONNECTED
padding stride =2 padding stride =2 DEEP NN
CONV 1 POOL1 CONV 2 POOL 2
14x14x6 5x5x16
28x28x6 10x10x 16

32x32x3
400x 1

Vec operation: 5 x 5 x 16 = 400

Feature Extraction Prediction

Al
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Convolutional Neural Networks

» To a computer, an image is a matrix of pixels.

» Each entry of the matrix is the intensity of the pixel: 0 — 255
(grayscale)

» The dimension of the matrix is the resolution of the image.

» For colored images, there is a third dimension to represent the
color channels: Red (R), Green (G) and

» Therefore the image is a three-dimensional matrix (tensor):
Height x Width x 3.

Al
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Convolutional Neural Networks

» An image kernel is a small matrix used to apply effects, such
as blurring, sharpening, outlining or embossing.

» In Machine Learning, kernels are used for “feature extraction”, a
technique for determining the most important portions of an
Image.

» In this context, the process is referred to more generally as
convolution.

» A nice webpage:
https://setosa.io/ev/image—kernels/

Al
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The Convolutional Layer

» Input data: X € RN

> Filter (kernel): W e R9*#

* W is usually unknown

» OQutput O is of a smaller dimension than the input due to border
effects. Fore=1,.. M —-Q+1,5=1,..., N— R+ 1:

* Oy = Zqul Zf:ﬂw O [ Xiir@-15:j+R-1)qur

Al
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The Convolutional Layer

“Convolution”
3|/1(1(2,8|4
1]ol7]3]2]s T B
2(3|5/1[1]3 Ji

* 101 =

1/4|1/2(6/|5

1/0(-1
31211372

Filter: 3 x 3 matrix
912162151 Output data: 4 x 4 matrix

Input data: 6 x 6 matrix

Result of the element-wise product and sum of the filter matrix
and the original matrix: 3x1+1x1+1x2+1x0+0x0+3x0+
1x(-1)+7x(-1)+5x(-1)=-7
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The Convolutional Layer

“Convolution”
311|11(2|8|4
110(7(3]|2]|6 Tola -7(| -2
2|3]s]1|1]3 Ji

k 1/0(-1 -

1/4|1]2(6]|5

1/0(-1
312|11(3(7|2

Filter: 3 x 3 matrix
912|6|2|5|1 Output data: 4 x 4 matrix

Input data: 6 x 6 matrix

Result of the element-wise product and sum of the filter matrix
and the original matrix: 1x1+0x1+3x1+1x0+7x0+5x0+
2x(-1)+3x(-1)+1x(-1)=-2
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The Convolutional Layer

“Convolution”
3/11|11(2|8|4
1/0|7(3|2]|6 1Tola -7 -2A| 2
2(3|5(1(1|3 7'

* 101 -

1/4/1(2|/6|5

101
31213712 | —1

Filter: 3 x 3 matrix
912|6|2|5|1 Output data: 4 x 4 matrix

Input data: 6 x 6 matrix

Result of the element-wise product and sum of the filter matrix
and the original matrix: 1x1+7x1+45x1+2x0+3x0+1x0+
8x(-1)+2x(-1)+1x(-1)=2
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The Convolutional Layer

“Convolution”
3/1|1]2|8|4
110(7(3|2]|6 TTola 7120 2(-7
2|3|5]1(1]|3 7'

k 1/0/(-1 -

114(1|/2|6]|5 Tola
3(2(1(3|7]2 T

Filter: 3 x 3 matrix
9/2|6]2|5]|1 Output data: 4 x 4 matrix

Input data: 6 x 6 matrix

Result of the element-wise product and sum of the filter matrix
and the original matrix: 2x1+3x1+1x1+8x0+2x0+1x0+
4x(-1)+6x(-1)+3x(-1)=-7
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The Convolutional Layer

“Convolution”
3|/1(1(2,8|4
1/0(7|3|2]|6 -7(-212 -7
1/0(-1
2/3|s5|1]1]3 % o 9
1/4|1|2|6]|5 -
1/0(-1 T
31211372
Filter: 3 x 3 matrix
912162151 Output data: 4 x 4 matrix

Input data: 6 x 6 matrix

Result of the element-wise product and sum of the filter matrix
and the original matrix: 1x1+2x1+1x1+0x0+3x0+4x0+
7x(-1)+5x(-1)+1x(-1)=-9
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The Convolutional Layer

> Forizl,...M—Q—i—l,j:1,...,N—R—|—1:

R
077:ZZW® X]?H—Q 1,7:j+R— 1]

Oz’j = L,Q (W [X]i:i+Q—1,j:j+R—1) LR

where:
* (© is the element-by-element multiplication;
* Lo € R® and ¢ are vector of ones;
* [Xii+0-14:j+r—1 is the block of the matrix X running from row ¢ to
row i + ) — j and from column j to column j 4+ R — 1; and
* EX]Z-;JFQ_LJ»:%R_JW is the element of [X];; 01+ r_1 In position
q,r
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The Convolutional Layer

» O;; is the discrete convolution between W and

[X]i:i+Q—1,j:j+R—1i

O;j = W % [X]i:H—Q—l,j:j—i-R—l

L)

Al
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The Convolutional Layer

Stride (downsampling) — reduce problem dimension
How many “pixels” we move at each step.

“Convolution” “Convolution” “Convolution”
with stride 1 with stride 2 with stride 3
3|1/1/|2(84 3(1|1/2(8]4 3(1(1]|2|84
1{0/7|3|2|6 1/07(3|2]|6 1/0(7(3|2|6
2135|113 2(3|5|1|1(3 2(3[5]|1|1]3
1(4]1|2|6|5 1/4(1]2|6]|5 1/4(1]2|6]|5
312(113]7]2 312113712 3(2]1(3|7]2
92(6[2]5(1 926|251 9/2|6|2|5]1
Input data: 6 x 6 matrix Input data: 6 x 6 matrix Input data: 6 x 6 matrix
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The Convolutional Laye

3ftjrj2sjal f[sgajiyegef4| |3 IpLI2YE 14| Stride = 1: slide one “pixel” each step
1lo|7]3]2]6 1]o) 73|26 1]of7]3]2]s
2|3|sf1]1]s3 2|3)s]1]:]3 HE SR AE - . .
For a 6 x 6 original matrix, the
1|af1]2]6]s 1|a]1]2]6]|5 1{af1]|2]6|s . . .
convolution results in a 4 x 4 matrix
3(2(1|3]|7]2 3l2)1|3]|7]2 3l2)13]|7]2
9f2]6|2|5|1 al2l6|2|s5|1 9l2l6|2|s|1
3|ijtj2(8)4) |3|1jaf2]8]4 Stride = 2: slide two “pixels” each step
1[o]7]3|2]s 1|of7]3|2]e
2[3]s5f1]1]3 235113r - .
For a 6 x 6 original matrix, the
1)al1]2]6]s 1{af1]2]6]5 . . .
convolution results in a 3 x 3 matrix

3(2(1|3]|7]2 3[2)13]|7]2 bl ith edwe eff
olalel2lsl1 ol2lel2ls]1 (problems with edge effects)
3[111121814) Sride = 3: slide three “pixels” each step
1]o|7]3[2]s
2[3]sf1][1]3]| . - .
T2 lels For a 6 x 6 original matrix, the

onvolution results in a 2 x 2 matrix
3(2(1)3]7]2| € esults in a
9l2]6|2|5|1
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The Convolutional Layer

Padding — avoid border effects
Output and input with the same dimension

elNeolNolNolNolNolNolNo)
Ol V| W KL |INIFLr|W| O
OININIBI W O|F—L| O
OO || P UVINN|~,|O
O N  W|N|IRIWIN|IO
O|lUV|IN|O| R |[N|O| O
O|lrRr|IN UWWI O &~ O
elNeolNolNolNolNolNolNo)
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The Convolutional Layer

Three channels define colored images: R (red), B (blue), and G (green).

B Filter:3x3
Output: 4x4x1

Input data: 6 x 6

Must be the same

Al
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The Convolutional Layer

| * =
B —
Filter:3x3x3 4x4x1
-
Input data: 6 x 6 x 3
Il Output: 4 x 4
—
%k =
Filter:3x3x 3 4xdxl
L

Input data: 6 x 6 x 3 Number of filters

Al
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The Convolutional Layer

RRRR s e (Y
=

oo

Al




The Pooling Layer

311(2)4 Max-pooling
1171316 Stride =2 7
25|13 '
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The Pooling Layer

311124 Max-pooling
1171316 Stride =2 716
25|13 '
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The Pooling Layer

31124 Max-pooling
1171316 Stride =2 716
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The Pooling Layer

31124 Max-pooling
1171316 Stride =2 716
2|5(1]3 193
916|121

|
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The Convolutional Neural Network

6(5x5) filters,
stride = 1, no (2 x 2) Max-pooling,
padding stride =2
POOL 1
14x14x6

28x28x6

32x32x3

ECONOMETRICS LAB

FULLY
16 (5 x 5) filters,
smdxe = 1', nearS (2 x 2) Max-pooling, CONNECTED
padding stride =2 DEEP NN
CONV 2 POOL 2
5x5x16
10x10x 16
400x 1

Vec operation: 5 x 5 x 16 = 400

66



The Convolutional Neural Network

» Hyperparameters:
1. number of convolution layers (C);
2. number of pooling layers (P);

3. number (K.) and dimensions (@, helght R, width and S, depth) of
filters in each convolution layer c=1,...,C;

4. architecture of the deep neural network.
» Parameters:
1. Filter weights: W, € RO*8ex% 4y —1 K, c¢=1,...,C;
2. ReLU biases: v, € RE ¢c=1,....C;
3. All the parameters of the fully connected deep NN: 2.

ECONOMETRCS LAB 67 I



Agenda for Today

Long Short Term Neural Networks
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Long Short Term Memory Networks

» Simple Recurrent Neural Network
hy = 0y, f(hi—1) + 0,
/y\t - eyf(ht)

» RNNs suffer from the vanishing/exploding gradient problem.
* Set the cost function to be

Qr(0) = %Z (Y — ?//\t)Q

097(0)

* o8

can be very small or diverge.



Long Short Term Memory Networks

~

X

X

G

"

» Red circles: logistic functions
A » Blue circles: hyperbolic tangent functions
70




Long Short Term Memory Networks

CELL STATE

® 009

» The cell state: a bit of memory to the LSTM to “remember” the past.
Al » LSTM learns to keep only relevant information and forget nonrelevant data.

71 X




Long Short Term Memory Networks

_____

~

! |
@
0.0 0 ?“‘Lq

TR FORGET GATE
/v

» The forget gate tells which information to throw away from the cell state.
A » |t is composed of a logistic function
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Long Short Term Memory Networks

_____

—
- @
2060 ?*ﬁ

N /

N INPUT GATE

» The input gate tells which new information should be stored in the cell state.

» |t is composed of a logistic function
A




Long Short Term Memory Networks

—
@
° 000

AN OUTPUT GATE

» The output gate provides the activation to the final output of the LSTM block at time ¢.

» |t is composed of a logistic function
A




Long Short Term Memory Networks

> At time t:
1. Inputs: x, € R” and past hidden state h,_; € R?

" 2. Running state cell: ¢,_; € R?
il




Long Short Term Memory Networks

> At time t:
1. Inputs: x, € R” and past hidden state h,_; € R?

" 2. Running state cell: ¢,_; € R?
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Long Short Term Memory Networks

> At time t:
1. Inputs: x, € R” and past hidden state h,_; € R?

" 2. Running state cell: ¢,_; € R?
il




Long Short Term Memory Networks

> At time ¢:

1. Inputs concatenate: z, = (x}, h;_1)’

" 2. Running state cell: ¢,_; € R?
il




Long Short Term Memory Networks

A
508

> At time t:
1. Logistic activation: f, = logistic(T'y2z; + ;) € R?
2. Running state cell: ¢,_; € R?
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Long Short Term Memory Networks

> At time ¢:
1. Logistic activation: f, = logistic(T'y2z; + ;) € R?
2. Running state cell: ¢,_; € R?
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Long Short Term Memory Networks

> At time t:
1. Logistic activation: i, = logistic(T';z, + 7o;) € R?
2. Running state cell: ¢,_; € R?
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Long Short Term Memory Networks

> At time t:
1. Logistic activation: i, = logistic(T';z, + 7o;) € R?
2. Running state cell: ¢,_; € R?
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Long Short Term Memory Networks

> At time ¢:
1. Logistic activation: i, = logistic(T';z, + 7o;) € R?

" 2. Running state cell: ¢,_; € R?
il
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Long Short Term Memory Networks

0/9
’

% 6 °

2.

> At time ¢:
1. Logistic activation: i, = logistic(T';z; + 7¢;) € R?
2. Tanh activation: p, = tanh(I',z, + 7,,) € R? (potential state cell)
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Long Short Term Memory Networks

> At time ¢:
1. Logistic activation: i, = logistic(T';z; + 7¢;) € R?
2. Tanh activation: p, = tanh(I',z, + 7,,) € R? (potential state cell)

85 X




Long Short Term Memory Networks

> At time t:
L e 10f,
2. 1, Op;

Al
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Long Short Term Memory Networks

> At time t:
L e 10f,
2. 1, Op;
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Long Short Term Memory Networks

> At time t:
L e 10f,
2. 1, Op;
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Long Short Term Memory Networks

> At time t:
Leg=c 10f+1,0p,

|
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Long Short Term Memory Networks

> At time t:
lLe=c 10f+1,0p,

|
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Long Short Term Memory Networks

> At time t:
Leg=¢10f+4,0p, )
2. Logistic activation: o, = logistic(T',z; + 7v,,) € R?
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Long Short Term Memory Networks

Al
ceonomeTacs
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> At time t:
L= 10fi+1,0p,

2. Logistic activation: o, = logistic(T',z; 4+ 7,,) € R?
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Long Short Term Memory Networks

> At time t:
Le=c10f+i0p, )
2. Logistic activation: o, = logistic(T',z; + 7v,,) € R?
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Long Short Term Memory Networks

> At time t:
Le=c10f+i0p, )
2. Logistic activation: o, = logistic(T',z; + 7v,,) € R?
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Long Short Term Memory Networks

> At time t:
Leg=¢10f+4,0p, )
2. Logistic activation: o, = logistic(T',z; + 7v,,) € R?
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Long Short Term Memory Networks

> At time ¢
1. hy = o, ® tanh(c;)

Al
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Long Short Term Memory Networks

> At time ¢
1. hy = o, ® tanh(c;)

|
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Long Short Term Memory Networks

> At time ¢:
1. hy = o, ® tanh(¢;)
Y = Yyl + oy

|
i o I



LSTM Network

» Initiate with ¢; = 0 and hy = 0.

i
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LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:
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LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:

ft = LOgiStiC(Wf.iBt + Ufh’t—l + bf)

Al
ceonoveTas s 99



LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:

ft = LOgiStiC(Wf.iBt + Ufh’t—l + bf)
it = LOngth(szt + Uih’tfl + bL)
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LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:
; = Logistic(W sz, + U sh;_, + by)
i, = Logistic(W,x, + U ;h,_; + b;)
o, = Logistic(W ,x;, + U h,_, + b,)
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LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:
; = Logistic(W sz, + U sh;_, + by)
i, = Logistic(W,x, + U ;h,_; + b;)
o, = Logistic(W ,x;, + U h,_, + b,)
p, = Tanh(W x, + U h,_, + b,)
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LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:
; = Logistic(W sz, + U sh;_, + by)
i, = Logistic(W,x, + U ;h,_; + b;)
o, = Logistic(W ,x;, + U h,_, + b,)
p, = Tanh(W x, + U h,_, + b,)
.= (f1O©¢y)+ (3, ©py)
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LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:
t = LOgiStiC(Wf.iBt —+ Ufh’t—l -+ bf)
it = LOngth(szt + Uih’tfl + bL)
o, = Logistic(W ,x;, + U h,_, + b,)
p; = Tanh(W .z, + U h,_, + b,)
Ci—= (fr © ¢ )+ (7:/ © py)
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LSTM Network

» Initiate with ¢; = 0 and hy = 0.
» Given input @, do for t € {1,...,T}:
; = Logistic(W sz, + U sh;_, + by)

i, = Logistic(W,x, + U ;h,_; + b;)
o, = Logistic(W ,x, + U, h,_; + b,)
p, = Tanh(W x; + U h; ; +b,)
.= (f1O©¢y)+ (3, ©py)
h,= o, ® Tanh(¢;)
y,=W,h, + b,

i
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Obrigado
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