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Introduction
What are Neural Networks (NN)?

Let’s play Minecraft
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Introduction
What are Neural Networks (NN)?

Let’s reproduce this image with blocks
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Introduction
What are Neural Networks (NN)?

We start with big blocks
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Introduction
What are Neural Networks (NN)?

A bit smaller blocks
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Introduction
What are Neural Networks (NN)?

Even smaller blocks
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Introduction
What are Neural Networks (NN)?

Now let’s polish the edges
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Introduction
What are Neural Networks (NN)?

Our final result
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Introduction
Neural Networks and function approximation

▶ Consider the function

y = f(x)

= 2 + 3x2

▶ We observe y with error...
... and only a sample

▶ How can we recover the
function from data?
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Introduction
Neural Networks and function approximation

▶ Divide the domain of x
into K = 5 regions

▶ Consider a locally constant
approximation

▶ Approximation gets better
as the number of regions
grows

▶ K = 10, 20, 100, ...
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Introduction
Neural Networks and function approximation

▶ In the previous slides, the function f(x) = 2 + x3 was being
approximated by

h(x) = β0 +
K−1∑
k=1

βkI(x ≥ ck),

where

I(x ≥ ck) =

{
1 if x ≥ ck

0 otherwise

▶ c1, . . . , cK are split points and β0, . . . , βK−1 represent the local
approximation
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Introduction
Neural Networks and function approximation

▶ Can we do better than this?

▶ Yes, we can smooth the edges

▶ Five regions with smooth edges
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Introduction
Neural Networks and function approximation

▶ The edges can be smoothed by replacing

I(x ≥ ck) =

{
1 if x ≥ ck

0 otherwise

by a smooth function
▶ One possible choice is the logistic function
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Introduction
Neural Networks and function approximation

This is the idea behind Neural Networks
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Neural Networks
Introduction
Mathematical definition

Deep Neural Networks

Convolutional Neural Networks

Long Short Term Neural Networks
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The Problem

▶ Observe the target variable Y and the inputs X = (X1, . . . , Xp)
′

▶ Unknown mapping (relation) between Y and X:

Y = f(X) + U,

where U is a random error ⇝ the relation between Y and X is not perfect

▶ From a random sample {Yi,X i}ni=1, we would like to learn
(estimate) f to predict Y ∗ from a new X∗:

Y ∗ := f(X∗)
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The Neural Network Approach

▶ NN idea: Approximates the unknown f(·) by

H(X;θ) = β0 +
J∑

j=1

βjS(γ
′
jX + γ0,j),

where:
✱ X 7→ γ ′

jX + γ0,j is an affine transformation (linear combination plus a
shift) of the input vector X

✱ S : R → R is a basis function

✱ θ := (β0, . . . , βJT
,γ ′

1, . . . ,γ
′
J , γ0,1, . . . , γ0,J)

′ is the vector of parameters
that must be estimated

18



The Neural Network Approach

▶ NN idea: Approximates the unknown f(·) by

H(X;θ) = β0 +
J∑

j=1

βjS(γ
′
jX + γ0,j),

where:
✱ X 7→ γ ′

jX + γ0,j is an affine transformation (linear combination plus a
shift) of the input vector X

✱ S : R → R is a basis function

✱ θ := (β0, . . . , βJT
,γ ′

1, . . . ,γ
′
J , γ0,1, . . . , γ0,J)

′ is the vector of parameters
that must be estimated

18



The Neural Network Approach

▶ NN idea: Approximates the unknown f(·) by

H(X;θ) = β0 +
J∑

j=1

βjS(γ
′
jX + γ0,j),

where:
✱ X 7→ γ ′

jX + γ0,j is an affine transformation (linear combination plus a
shift) of the input vector X

✱ S : R → R is a basis function

✱ θ := (β0, . . . , βJT
,γ ′

1, . . . ,γ
′
J , γ0,1, . . . , γ0,J)

′ is the vector of parameters
that must be estimated

18



Some Neural Network Nomenclature

H(X;θ) = β0 +

JT∑
j=1

βjS(γ
′
jX + γ0,j)

▶ The basis functions S are called activation functions

▶ The parameters θ are called weights
▶ In particular, β0 and γ0,j are called bias ⇝ Unrelated to the

statistical concept of bias

▶ Note that γ0,j shifts the whole S curve to the left and right
▶ While γj controls for the “slope” of S

19
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Popular Choices for S

Logistic

S(X) =
1

1 + exp(−X)

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)

Hyperbolic tangent

S(X) =
exp(X)− exp(−X)

exp(X) + exp(−X)
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Logistic Activation Function
Varying slope parameter γ
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Logistic NN with 2 Inputs
Geometric Interpretation

22



Activation Functions

▶ In general, but not always, S(·) is a squashing function.

Squashing function
A function S : R −→ [a, b], a < b, is a squashing (sigmoid) function if it is
non-decreasing, lim

X−→∞
S(X) = b and lim

X−→−∞
S(X) = a

▶ Some popular (old) squashing functions:
✱ Heaviside: S(X) = I(X ≥ 0)
✱ Logistic: S(X) = 1/[1 + exp(−X)]
✱ Hyperbolic tangent:
S(X) = [exp(X)− exp(−X)]/[exp(X) + exp(−X)]

✱ Gaussian sigmoid: S(X) = (2π)−1/2
∫ X

−∞ exp(−u2/2)du

✱ Cosine squasher: S(X) = 1+cos(X+3π/2)
2

I(|X| ≤ π/2) + I(X > π/2)
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Activation Function: Rectified Linear Units
Example of a non-squashing Activation Function

S(X) := ReLU(X) = max(0, X)

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

0

1

2

3

4

5

6

7

8

9

10

f(
x)

24



Activation Function: Radial Basis
Example of a non-squashing Activation Function

S(X) := RBF(X) = exp(−X2)
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Why NNs?

Universal Approximation Theorem
Feed-forward NN with a single hidden layer with “arbitrary” squashing functions
can approximate any Borel-measurable function from one finite dimensional space
to another to any desired degree of accuracy, provided sufficiently many (finite)
hidden units are available

▶ How big is the class of Borel Measurable functions? It contains
all functions with at most countable discontinuities

▶ References:
✱ Cybenko (1989); Hornik, Stimchombe, and White (NN, 1989); Gallant

and White (1988); Gallant and White (NN, 1992); Hornik (NN, 1991);
and many others

▶ The same NN can approximate the derivatives of the function

26
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NN as a Graph

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

▶ The input layer is just the vector of explanatory variables.

▶ The hidden layer consists of a set of hidden units (neurons)
▶ The output layer is the predicted value for the dependent variables

27
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NN as a Graph

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

▶ At each unit inputs are linearly combined: γ′
jX + γ0,j

▶ Nonlinear transformation in the hidden layer: S(γ′
jX + γ0,j)

▶ Outputs of the hidden layer are linearly combined β0 +
∑5

j=1 βjS(γ
′
jX + γ0,j)
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Geometric InterpretationInterpretação Geométrica

 Geometria de hiperplanos

x1

x2

g g0 /||g||

H={xt  2| g’ xt = g0}
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Geometric InterpretationInterpretação Geométrica

 Geometria de hiperplanos

x1

x2

H+={xt  2| g’xt  g0}

H
-
={xt  2| g’xt < g0}
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Geometric Interpretation
Interpretação Geométrica

 Geometria de hiperplanos

x1

x2

x1

x2

h hiperplanos dividem o espaço 

em diversas regiões poliédricas. 

O número máximo de regiões é determinado por

M(h, q) = M(h-1, q) + M(h-1, q-1), onde

M(1, q) = 2 e M(h, 1) = h+1.

▶ J hyperplanes divide the space of covariates into several
polyhedral regions. The maximum number of regions is given by

M(J, p) = M(J − 1, p) +M(J − 1, p− 1),

where M(1, p) = 2 and M(J, 1) = J + 1.
31



Geometric Interpretation

▶ In each region, the local model
is a constant

▶ Smooth transition between
regions

▶ The number of regions and
the degree of smoothness
determine the quality of the
approximation

32



Geometric Interpretation
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Neural Networks
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Mathematical definition
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Long Short Term Neural Networks
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From Shallow to Deep: What is a Deep Neural Network?

▶ It is “just” a neural network with more than one hidden layer

▶ The layer might be fully connected or not

▶ Different number of units in each hidden layer

▶ Different activation function: rectified linear units (ReLU)
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What are the Potential Advantages Over Shallow NNs?

▶ It has been very successful in many complex applications:
✱ Google Neural Machine Translation
✱ Lip reading
✱ Google Maps and Street View

▶ Less hidden units per layer. “While the universal
approximation property holds both for
hierarchical and shallow networks, deep
networks can approximate the class of
compositional functions as well as shallow
networks but with exponentially lower
number of training parameters and sample
complexity.”

Mhaskar, Liao and Poggio (2017)
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Graphical Representation of a (Shallow) NN

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer
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Graphical Representation of a Deep Neural Networks
2 fully connected layers

Input #1

Input #2

Input #3

Input #4

Output

1st
Hidden
layer

2nd
Hidden
layer

Input
layer

Output
layer
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Convolutional Neural Networks
Introduction

▶ Convolutional Neural Networks (CNNs) are a class of Neural
Network models that have proven successful in image recognition
and classification.

▶ Multi-layer network consisting of different key elements:

✱ Convolutional layer (one or more)

✱ Nonlinear transformation

✱ Pooling (dimension reduction)

✱ Fully-connected (deep) feed-forward neural network

40



Convolutional Neural Networks
Introduction

▶ Sequence of layers:
convolution + nonlinear transformation → pooling →

convolution + nonlinear transformation → pooling → · · · →
convolution + nonlinear transformation → pooling →

Fully-connected (deep) NN

41



Convolutional Neural Networks
Introduction

32 x 32 x 3

28 x 28 x 6
14 x 14 x 6

10 x 10 x 16
5 x 5 x 16

400 x 1

CONV 1 POOL 1 CONV 2 POOL 2

FULLY 
CONNECTED 

DEEP NN

16 (5 x 5) filters, 
stride = 1, no 

padding
(2 x 2) Max-pooling, 

stride =2

6 (5 x 5) filters, 
stride = 1, no 

padding
(2 x 2) Max-pooling, 

stride =2

Vec operation: 5 x 5 x 16 = 400

Feature Extraction Prediction
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Convolutional Neural Networks
Filters (Kernels)

▶ To a computer, an image is a matrix of pixels.

▶ Each entry of the matrix is the intensity of the pixel: 0− 255
(grayscale)

▶ The dimension of the matrix is the resolution of the image.

▶ For colored images, there is a third dimension to represent the
color channels: Red (R), Green (G) and Blue (B).

▶ Therefore the image is a three-dimensional matrix (tensor):
Height×Width× 3.
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Convolutional Neural Networks
Filters (Kernels)

▶ An image kernel is a small matrix used to apply effects, such
as blurring, sharpening, outlining or embossing.

▶ In Machine Learning, kernels are used for “feature extraction”, a
technique for determining the most important portions of an
image.

▶ In this context, the process is referred to more generally as
convolution.

▶ A nice webpage:
https://setosa.io/ev/image-kernels/
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The Convolutional Layer

▶ Input data: X ∈ RM×N

▶ Filter (kernel): W ∈ RQ×R

✱ W is usually unknown

▶ Output O is of a smaller dimension than the input due to border
effects. For i = 1, . . .M −Q+ 1, j = 1, . . . , N −R + 1:

✱ Oij =
∑Q

q=1

∑R
r=1[W ⊙ [X]i:i+Q−1,j:j+R−1]q,r.
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The Convolutional Layer

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

1 0 -1

1 0 -1

1 0 -1* =
-7

“Convolution”

Result of the element-wise product and sum of the filter matrix
and the original matrix: 3 x 1 + 1 x 1 + 1 x 2 + 1 x 0 + 0 x 0 + 3 x 0 + 

1 x (-1) + 7 x (-1) + 5 x (-1) = -7

Input data: 6 x 6 matrix

Filter: 3 x 3 matrix
Output data: 4 x 4 matrix
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The Convolutional Layer

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

1 0 -1

1 0 -1

1 0 -1* =
-7 -2

“Convolution”

Result of the element-wise product and sum of the filter matrix
and the original matrix: 1 x 1 + 0 x 1+ 3 x 1 + 1 x 0 + 7 x 0 + 5 x 0 + 

2 x (-1) + 3 x (-1) + 1 x (-1) = -2

Input data: 6 x 6 matrix

Filter: 3 x 3 matrix
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The Convolutional Layer

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

1 0 -1

1 0 -1

1 0 -1* =
-7 -2 2

“Convolution”

Result of the element-wise product and sum of the filter matrix
and the original matrix: 1 x 1 + 7 x 1+ 5 x 1 + 2 x 0 + 3 x 0 + 1 x 0 + 

8 x (-1) + 2 x (-1) + 1 x (-1) = 2

Input data: 6 x 6 matrix

Filter: 3 x 3 matrix
Output data: 4 x 4 matrix
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The Convolutional Layer

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

1 0 -1

1 0 -1

1 0 -1* =
-7 -2 2 -7

“Convolution”

Result of the element-wise product and sum of the filter matrix
and the original matrix: 2 x 1 + 3 x 1+ 1 x 1 + 8 x 0 + 2 x 0 + 1 x 0 + 

4 x (-1) + 6 x (-1) + 3 x (-1) = -7

Input data: 6 x 6 matrix

Filter: 3 x 3 matrix
Output data: 4 x 4 matrix
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The Convolutional Layer

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

1 0 -1

1 0 -1

1 0 -1* =
-7 -2 2 -7

-9

“Convolution”

Result of the element-wise product and sum of the filter matrix
and the original matrix: 1 x 1 + 2 x 1+ 1 x 1 + 0 x 0 + 3 x 0 + 4 x 0 + 

7 x (-1) + 5 x (-1) + 1 x (-1) = -9

Input data: 6 x 6 matrix

Filter: 3 x 3 matrix
Output data: 4 x 4 matrix
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The Convolutional Layer

▶ For i = 1, . . .M −Q+ 1, j = 1, . . . , N −R + 1:

Oij =

Q∑
q=1

R∑
r=1

[W ⊙ [X]i:i+Q−1,j:j+R−1]q,r

Oij = ι
′
Q

(
W ⊙ [X]i:i+Q−1,j:j+R−1

)
ιR

where:
✱ ⊙ is the element-by-element multiplication;
✱ ιQ ∈ RQ and ιRR are vector of ones;
✱ [X]i:i+Q−1,j:j+R−1 is the block of the matrix X running from row i to

row i+Q− j and from column j to column j +R− 1; and
✱ [X]i:i+Q−1,j:j+R−1]q,r is the element of [X]i:i+Q−1,j:j+R−1 in position
(q, r).
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The Convolutional Layer

▶ Oij is the discrete convolution between W and
[X]i:i+Q−1,j:j+R−1:

Oij =W ∗ [X]i:i+Q−1,j:j+R−1
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The Convolutional Layer
Stride

Stride (downsampling) −→ reduce problem dimension
How many “pixels” we move at each step.

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

“Convolution” 
with stride 1

Input data: 6 x 6 matrix

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

“Convolution” 
with stride 2

Input data: 6 x 6 matrix

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

“Convolution” 
with stride 3

Input data: 6 x 6 matrix
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The Convolutional Layer
Stride

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

3 1 1 2 8 4

1 0 7 3 2 6

2 3 5 1 1 3

1 4 1 2 6 5

3 2 1 3 7 2

9 2 6 2 5 1

Stride = 1: slide one “pixel” each step

For a 6 x 6 original matrix, the

convolution results in a 4 x 4 matrix

Stride = 2: slide two “pixels” each step

For a 6 x 6 original matrix, the

convolution results in a 3 x 3 matrix

(problems with edge effects)

Stride = 3: slide three “pixels” each step

For a 6 x 6 original matrix, the

convolution results in a 2 x 2 matrix
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The Convolutional Layer
Padding

Padding −→ avoid border effects
Output and input with the same dimension

0 0 0 0 0 0 0 0

0 3 1 1 2 8 4 0

0 1 0 7 3 2 6 0

0 2 3 5 1 1 3 0

0 1 4 1 2 6 5 0

0 3 2 1 3 7 2 0

0 9 2 6 2 5 1 0

0 0 0 0 0 0 0 0
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The Convolutional Layer
Padding

0 0 0 0 0 0 0 0

0 3 1 1 2 8 4 0

0 1 0 7 3 2 6 0

0 2 3 5 1 1 3 0

0 1 4 1 2 6 5 0

0 3 2 1 3 7 2 0

0 9 2 6 2 5 1 0

0 0 0 0 0 0 0 0

1 0 -1

1 0 -1

1 0 -1* =

3
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The Convolutional Layer
Padding

0 0 0 0 0 0 0 0

0 3 1 1 2 8 4 0

0 1 0 7 3 2 6 0

0 2 3 5 1 1 3 0

0 1 4 1 2 6 5 0

0 3 2 1 3 7 2 0

0 9 2 6 2 5 1 0

0 0 0 0 0 0 0 0

1 0 -1

1 0 -1

1 0 -1* =

3 -4
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The Convolutional Layer
Padding

0 0 0 0 0 0 0 0

0 3 1 1 2 8 4 0

0 1 0 7 3 2 6 0

0 2 3 5 1 1 3 0

0 1 4 1 2 6 5 0

0 3 2 1 3 7 2 0

0 9 2 6 2 5 1 0

0 0 0 0 0 0 0 0

1 0 -1

1 0 -1

1 0 -1* =

3 -4 -2
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The Convolutional Layer
Multiple Input Channels

Three channels define colored images: R (red), B (blue), and G (green).

* =

Input data: 6 x 6 x 3

Filter: 3 x 3 x 3
Output: 4 x 4 x 1

Must be the same
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The Convolutional Layer
Multiple Filters

* =

Input data: 6 x 6 x 3

Filter: 3 x 3 x 3
4 x 4 x 1

* =

Input data: 6 x 6 x 3

Filter: 3 x 3 x 3
4 x 4 x 1

Output: 4 x 4 x 2

Number of filters
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The Convolutional Layer
Nonlinearity

* = ReLU +g01

* = ReLU +g02
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The Pooling Layer

3 1 2 4

1 7 3 6

2 5 1 3

9 6 2 1

7

Max-pooling
Stride = 2
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The Pooling Layer

3 1 2 4

1 7 3 6

2 5 1 3

9 6 2 1

7 6

Max-pooling
Stride = 2
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The Pooling Layer

3 1 2 4

1 7 3 6

2 5 1 3

9 6 2 1

7 6

9

Max-pooling
Stride = 2
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The Pooling Layer

3 1 2 4

1 7 3 6

2 5 1 3

9 6 2 1

7 6

9 3

Max-pooling
Stride = 2
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The Convolutional Neural Network
Putting Pieces Together

32 x 32 x 3

28 x 28 x 6
14 x 14 x 6

10 x 10 x 16
5 x 5 x 16

400 x 1

CONV 1 POOL 1 CONV 2 POOL 2

FULLY 
CONNECTED 

DEEP NN

16 (5 x 5) filters, 
stride = 1, no 

padding
(2 x 2) Max-pooling, 

stride =2

6 (5 x 5) filters, 
stride = 1, no 

padding
(2 x 2) Max-pooling, 

stride =2

Vec operation: 5 x 5 x 16 = 400
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The Convolutional Neural Network
Architecture Setting and Estimation

▶ Hyperparameters:
1. number of convolution layers (C);
2. number of pooling layers (P );
3. number (Kc) and dimensions (Qc height, Rc width and Sc depth) of

filters in each convolution layer c = 1, . . . , C;
4. architecture of the deep neural network.

▶ Parameters:
1. Filter weights: W ic ∈ RQc×Rc×Sc , i = 1, . . . , Kc, c = 1, . . . , C;
2. ReLU biases: γc ∈ RKc , c = 1, . . . , C;
3. All the parameters of the fully connected deep NN: ψ.
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Long Short Term Memory Networks
Introduction

▶ Simple Recurrent Neural Network

ht = θhf(ht−1) + θxxt

ŷt = θyf(ht)

▶ RNNs suffer from the vanishing/exploding gradient problem.
✱ Set the cost function to be

QT (θ) =
1

T

T∑
t=1

(yt − ŷt)
2

✱
∂QT (θ)

∂θ
can be very small or diverge.

▶ Solution: LSTM
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Long Short Term Memory Networks
The LSTM Cell

X +

X

X

▶ Red circles: logistic functions
▶ Blue circles: hyperbolic tangent functions
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Long Short Term Memory Networks
The LSTM Cell: The Cell State

X +

X

X

CELL STATE

▶ The cell state: a bit of memory to the LSTM to “remember” the past.
▶ LSTM learns to keep only relevant information and forget nonrelevant data.
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Long Short Term Memory Networks
The LSTM Cell: The Forget Gate

X +

X

X

FORGET GATE

▶ The forget gate tells which information to throw away from the cell state.
▶ It is composed of a logistic function

72



Long Short Term Memory Networks
The LSTM Cell: The Input Gate

X +

X

X

INPUT GATE

▶ The input gate tells which new information should be stored in the cell state.
▶ It is composed of a logistic function
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Long Short Term Memory Networks
The LSTM Cell: The Output Gate

X +

X

X

OUTPUT GATE

▶ The output gate provides the activation to the final output of the LSTM block at time t.
▶ It is composed of a logistic function

74



Long Short Term Memory Networks
The Information Flow

X +

X

X

xt

ht-1

ct-1

▶ At time t:
1. Inputs: xt ∈ Rp and past hidden state ht−1 ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct-1

xt

ht-1

▶ At time t:
1. Inputs: xt ∈ Rp and past hidden state ht−1 ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

xt

ht-1

ct-1

▶ At time t:
1. Inputs: xt ∈ Rp and past hidden state ht−1 ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

(xt, ht-1)

ct-1

▶ At time t:
1. Inputs concatenate: zt = (x′

t,h
′
t−1)

′

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

(xt, ht-1)

ct-1

▶ At time t:
1. Logistic activation: f t = logistic(Γfzt + γ0f ) ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct-1

ft

▶ At time t:
1. Logistic activation: f t = logistic(Γfzt + γ0f ) ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

(xt, ht-1)

ct-1

ft

▶ At time t:
1. Logistic activation: it = logistic(Γ′

izt + γ0i) ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct-1

ft

(xt, ht-1)

▶ At time t:
1. Logistic activation: it = logistic(Γ′

izt + γ0i) ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct-1

ft it

▶ At time t:
1. Logistic activation: it = logistic(Γ′

izt + γ0i) ∈ Rq

2. Running state cell: ct−1 ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct-1

ft it

(xt, ht-1)

▶ At time t:
1. Logistic activation: it = logistic(Γ′

izt + γ0i) ∈ Rq

2. Tanh activation: pt = tanh(Γ′
pzt + γ0p) ∈ Rq (potential state cell)

84



Long Short Term Memory Networks
The Information Flow

X +

X

X

ct-1

ft it

(xt, ht-1)

▶ At time t:
1. Logistic activation: it = logistic(Γ′

izt + γ0i) ∈ Rq

2. Tanh activation: pt = tanh(Γ′
pzt + γ0p) ∈ Rq (potential state cell)
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct-1

ft

it

pt

▶ At time t:
1. ct−1 ⊙ f t

2. it ⊙ pt
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Long Short Term Memory Networks
The Information Flow

X +

X

X

▶ At time t:
1. ct−1 ⊙ f t

2. it ⊙ pt
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Long Short Term Memory Networks
The Information Flow

X +

X

X

▶ At time t:
1. ct−1 ⊙ f t

2. it ⊙ pt
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct

▶ At time t:
1. ct = ct−1 ⊙ f t + it ⊙ pt
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct

▶ At time t:
1. ct = ct−1 ⊙ f t + it ⊙ pt
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Long Short Term Memory Networks
The Information Flow

X +

X

X

(xt, ht-1)

ct

▶ At time t:
1. ct = ct−1 ⊙ f t + it ⊙ pt
2. Logistic activation: ot = logistic(Γ′

ozt + γ0o) ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X
(xt, ht-1)

ct

▶ At time t:
1. ct = ct−1 ⊙ f t + it ⊙ pt
2. Logistic activation: ot = logistic(Γ′

ozt + γ0o) ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ct

ot

▶ At time t:
1. ct = ct−1 ⊙ f t + it ⊙ pt
2. Logistic activation: ot = logistic(Γ′

ozt + γ0o) ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X
ct

ot

ct

▶ At time t:
1. ct = ct−1 ⊙ f t + it ⊙ pt
2. Logistic activation: ot = logistic(Γ′

ozt + γ0o) ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X
ot

ct

▶ At time t:
1. ct = ct−1 ⊙ f t + it ⊙ pt
2. Logistic activation: ot = logistic(Γ′

ozt + γ0o) ∈ Rq
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Long Short Term Memory Networks
The Information Flow

X +

X

X
ot

ct

▶ At time t:
1. ht = ot ⊙ tanh(ct)
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ht

ct

▶ At time t:
1. ht = ot ⊙ tanh(ct)
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Long Short Term Memory Networks
The Information Flow

X +

X

X

ht

ct

▶ At time t:
1. ht = ot ⊙ tanh(ct)

yt = γ
′
yht + γ0y
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LSTM Network
Formal (Mathematical) representation

▶ Initiate with c0 = 0 and h0 = 0.

▶ Given input xt do for t ∈ {1, . . . , T}:

f t = Logistic(W fxt +U fht−1 + bf)

it = Logistic(W ixt +U iht−1 + bi)

ot = Logistic(W oxt +U oht−1 + bo)

pt = Tanh(W cxt +U cht−1 + bc)

ct= (f t ⊙ ct−1) + (it ⊙ pt)
ht= ot ⊙ Tanh(ct)
yt=W yht + by
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